e-mail:
Page at Google Academy
ORCID Publications
PhD in Physics, 1989, Belarusian State University, Minsk
Doctor of Science in Physics, 2005, Institute for Physics, Academy of Science, Belarus
Theses
- Ph.D. , Belarusian State University, 1989. Thesis title: «On Quantum Field Models With Non-compact Internal Symmetry Groups»
- Doctor of Science in Physics, 2005, Institute for Physics.Thesis title: «Solution Methods for the Unitarity Problem of Quantum Field Theory with Indefinite Metric, Quantum Computations and Quantum Cosmology „
The first prize of the Physics Institute (Belarus National Academy of Sciences) for series of papers ‚Geometric Effects in Quantum Computations‘ (with E. A. Tolkachev and A. Ya. Tregubovich).
Specialization: Quantum Field Theory, Gravity, Cosmology, Early Universe Physics
Recent selected publications
- Shalyt-Margolin, A. (2019). The equivalence principle, cosmological term, quantum theory and measurability Advanced Studies in Theoretical Physics, Vol. 13, 2019, no. 3, 133-149. Advanced Studies in Theoretical Physics, 13(3), 133-149. DOI: 10.12988/astp.2019.9210
- Shalyt-Margolin, A. (2019). Measurability. Gravity and gauge theories in measurable form at low and high energies. Advanced Studies in Theoretical Physics, 13(1), 23-50.
- Shalyt-Margolin, A. (2019). The Equivalence Principle Applicability Boundaries, QFT in Flat Space and Measurability I. Free Quantum Fields. Nonlinear Phenomena in Complex Systems, 22(2), 135-150.
- Shalyt-Margolin, A. (2018). Minimal quantities and measurable variant of gravity in the general form. Advanced Studies in Theoretical Physics, 12(2), 57-78.
- Shalyt-Margolin, A. (2017). Minimal length, measurability, and special relativity. Advanced Studies in Theoretical Physics, 11(2), 77-104. DOI: 10.12988/astp.2017.61139
- Shalyt-Margolin, A. (2016). Minimal length, measurability and gravity. Entropy, 18(3), 80. DOI: 10.3390/e18030080
- Alexander E. Shalyt-Margolin, Minimal Length, Measurability, Continuous and Discrete Theories, Chapter 7 in ‚Horizons in World Physics. Volume 284‘, pp 213-229, Editor: Albert Reimer, Nova Science Publishers 2015
- Alexander E. Shalyt-Margolin, Dark Energy and Minimal Length, Chapter 5 in ‚Advances in Dark Energy Research‘, p.p. 103-124, Editor: Miranda L. Ortiz, Nova Science Publishers 2015
- A.E.Shalyt-Margolin, Minimal Length and the Existence of Some Infinitesimal Quantities in Quantum Theory and Gravity, Advances in High Energy Physics Volume 2014 (2014), Article ID 195157, 8 pages
- Alexander Shalyt-Margolin, Gravity at All the Energy Levels. Contours of a Future Building. LAP LAMBERT Academic Publishing, Saarbrucken, Deutshland/Germany, 2014, 100 p.p.
- A. E. Shalyt-Margolin, Probable Entropic Nature of Gravity in Ultraviolet and Infrared Limits. Part I: An Ultraviolet Case, Advances in High Energy Physics, 2013, 384084 (2013)
- A.E. Shalyt-Margolin, Quantum Theory at Planck Scale, Limiting Values, Deformed Gravity and Dark Energy Problem. International Journal of Modern Physics D Vol. 21,No. 2 (2012) 1250013 (20 pages)
- Alexander Shalyt-Margolin, Dark Energy Problem, Physics of Early Universe and Some New Approaches in Gravity. Entropy. 2012; 14(11): 2143-2156
- A.E. Shalyt-Margolin, Deformed Quantum Field Theory, Thermodynamics at Low and High Energies, and Gravity. II. Deformation Parameter. International Journal of Theoretical and Mathematical Physics 2012, 2(3): 41-50
- Shalyt-Margolin A. E., Quantum Theory at Planck Scale, Dynamical Cosmological Term and Deformed Gravity. International Journal of Theoretical and Mathematical Physics, 2011, Vol. 1, P. 1(11)
- Alexander E. Shalyt-Margolin, Deformed Quantum Field Theory, Thermodynamics at Low and High Energies, and Dark Energy Problem. ‚Dark Energy: Theory, Implications and Roles in Cosmology‘, Nova Science Publishers, USA. 2013, pp. 137 -163
- A.E. Shalyt-Margolin, The Quantum Theory of Early Universe and Dark Energy Problem, ‚Einstein and Hilbert: Dark Matter‘, Nova Science Publishers, USA. 2012, P. 171-182
- A. E. Shalyt-Margolin. Entropy in the Present and Early Universe: New Small Parameters and Dark Energy Problem. Entropy. V.12. 2010.P.932-952
- A. E. Shalyt-Margolin. Entropy in the present and early universe and vacuum energy. AIP Conference Proceedings. V.1205. 2010. P.160-167.
- A.E.Shalyt-Margolin, The Density Matrix Deformation in Physics of the Early Universe and Some of its Implications, ‚Quantum Cosmology Research Trends. Horizons in World Physics, Volume 246,p.p.49-91‘ (Nova Science Publishers, Inc., Hauppauge, NY, 2005)
- A.E.Shalyt-Margolin, The Universe as a Nonuniform Lattice in Finite-Volume Hypercube. II. Simple Cases of Symmetry Breakdown and Restoration // Intern. Journ. of Mod. Phys. A. — 2005.- Vol. 20. p. 4951-4964.
- A.E.Shalyt-Margolin, Deformed Density Matrix and Quantum Entropy of the Black Hole // Entropy 2006. 8 [1], p. 31-43
- A.E.Shalyt-Margolin, A.Ya.Tregubovich. Deformed density matrix and generalized uncertainty relation in thermodynamics // Mod. Phys. Lett. A.- 2004.-Vol.19.-p.71-81.
- A.E.Shalyt-Margolin. Non-unitary and unitary transitions in generalized quantum– mechanics, new small parameter and information problem solving // Mod. Phys. Lett. A. — 2004.-Vol.19.-p 391-403.
- A.E. Shalyt-Margolin. The universe as a nonuniform lattice in finite-volume hypercube I. Fundamental definitions and particular features // Int. J. Mod.Phys.-2004.-Vol.13.-p.853-863.
- A.E. Shalyt-Margolin. Pure states, mixed states and Hawking problem in generalized quantum mechanics // Mod. Phys. Lett. A. — 2004.-Vol.19.-p 2037-2045.
- A.E.Margolin, V. I. Strazhev & A. Ya. Tregubovich. On non-adiabatic holonomic quantum computer // Phys. Lett. A.- V. 312, N5-6.- 2003.-p.296-300.
- E. Shalyt-Margolin, V. I. Strazhev & A. Ya. Tregubovich. On Geometric Realization of Quantum Computations in Externally Driven 4-Level System // Optics and Spectroscopy.- V.94, N5.- 2003.- p. 789– 791.
- A.E.Shalyt-Margolin and J.G.Suarez. Quantum Mechanics at Planck’s scale and Density Matrix // Int. J. Mod.Phys.-D.12.-2003.- p.1265 — 1278.
- A.E.Shalyt-Margolin, V.I.Strazev, A.Ya.Tregubovich. Geometric phases and quantum computations // Phys. Lett. A.- 2002.- V. 303.- N 2-3.- p. 131-134.