Vladimir Baryshevsky

Channeling, Radiation and Reactions
in Crystals under High Energy

B.[ Bapbuuebckua

KanaaupoBanue,

uzAyveHuUe
u peakuuu
B kpucraaaax
npu Bbicokux

IHEeprunx

Author-made translation of the book
published in Russian in 1982

2016



2

Channeling, Radiation and Reactions in Crystals under High Energy



Contents

Channeling of High-Energy Particles in Crystals 1

1.1 Channeling and Diffraction of Particles. . . . . . . .. .. 1

1.2 Principles of the Quantum Theory of Channeling . . . . .

1.3  The Energy-Band Spectrum of Electrons and Positrons
Channeled in a Single Crystal . . . . . ... ... ... .. 10

A Channeled Fast Particle as a 2D (1D) Relativistic Atom 23

2.1  Spontaneous Photon Radiation in Radiation Transitions
Between the Bands of Transverse Energy of Channeled

Particles . . . . . . . . 23
2.2 Complex and Anomalous Doppler Effects in an Absorption
Medium . . . . . . .. . 29

The Foundations of the Theory of y-quanta Emission in
Crystals under Channeling ... 35

3.1  The Cross Section of Photon Generation by Particles in an

External Field . .. .. ... ... ... ... .. 35
3.2 Photon Generation in Crystals under Channeling Conditions 42
3.3 Spectral and Angular Distributions of Photons in the

Dipole Approximation . . . . . ... ... ... ... ... 50
The Influence of v-Quanta Refraction and Diffraction on .... 53
4.1 Radiation in a Refractive Medium . . . ... .. ... .. 53
4.2 Optical Radiation Produced by Channeled Particles . .. 57

4.3  Angular Distribution of Radiation Produced by Particles
in a Crystal under Refraction . . . . ... ... ... ... 63

iii



iv

Channeling, Radiation and Reactions in Crystals under High Energy

4.4  Influence of Diffraction on the Process of Photon Emission
inCrystals . . . .. ... L

66

4.5  Spectral-Angular Distribution in the Bragg and Laue Cases 69

4.6  Radiation Spectrum in the Quasi-classical Approximation
4.7  Parametric Radiation . . . ... .. ... ... ...

75
80

Classical Theory of Radiation Formation by Particles in a Medium 89

5.1  Particle Radiation in a Medium in the Presence of Scatter-
ing and Energy Losses . . . . .. ... ... ... ...,
5.2 Spectral-Angular Distribution in the Absence of the En-
ergy Loss . . . . .. Lo

Scattering and Radiation in Crystals Exposed to Variable Fields

6.1  Generation of y-quanta by Channeled Particles in the Pres-
ence of Variable Fields . . . . . ... ... ... .. ....
6.2  Coherent Scattering of Photons by a Beam of Channeled
Particles. The Effect of Super-radiation . . .. ... ...
6.3 Induced Scattering and Radiation under Diffraction Con-
ditions . . . . . .. oL
6.4  Optical Anisotropy in a Rotating Coordinate System . . .

Interference of Independently Generated Beams of y-quanta

7.1  Interference of Independently Generated Photons . . . . .
7.2  Interference of y-quanta Generated by the Beams of Rela-
tivistic Particles . . . . . . .. .. oo oL

Theory of Measurement of Nuclear Reaction Times Using
Shadow Effect ...

8.1  Quantum Theory of Reactions Induced by Channeled Par-
ticles . . . ..

Spin Rotation and Radiative Self-Polarization of Particles
in Bent Crystals

9.1 Spin Rotation of Relativistic Particles Passing Through a
Crystal . . . ... . .
9.2  Spin Rotation at Deflection of a Charged Relativistic Par-
ticle in the Electric Field . . . . . . .. .. ... ... ...
9.3  Depolarization of Fast Particles Moving in Matter

109

109

112

114
120

135
135

141

145

145

159

159

161
168



Contents 5

9.4  Oscillations of Polarization of a Fast Channeled Particle

Caused by its Quadrupole Moment . . . . . . . ... ... 172

9.5  Radiative Self-Polarization of Spin of Fast Particles in
Crystals . . . . ... . L 174

10. The Influence of Radiative Transitions on Particles

Channeling in Crystals 179
10.1 Particle Lifetime at the Transverse Motion Level . . . . . 179

10.2 Classical Theory of Channeling of Charged Particles with
Due Account of Radiation Energy Losses . . . ... ... 182

10.3 Quantum Theory of Channeling Electrons and Positrons
Allowing for Multiple Scattering and Radiation Energy

Losses . . . . . . . oL 193
10.4 Pair Production by y-quanta in Crystals Under Channeling

Conditions . . . . . . . .. . .. 204
10.5 Nuclear Optics of Crystals at High Energies . . . . . . . . 208
10.6 Surface Channeling of Charged Particles . . . . . . . . .. 211

Bibliography 215



Chapter 1

Channeling of High-Energy Particles
in Crystals

1.1 Channeling and Diffraction of Particles

A fast particle passing through a single crystal undergoes elastic and inelas-
tic scattering due to the interaction with electrons and nuclei and causes
various reactions. From a quantum mechanical viewpoint, scattering pro-
cesses and reactions excite secondary (scattered) waves in a crystal. One
should bear in mind that secondary waves, which describe elastic scatter-
ing, interfere with one another and with the incident wave. This leads to
the formation of a sum coherent wave in a crystal. Since the formation of
a coherent wave is caused by the processes of elastic scattering, its trans-
mission through the crystal can be described by introducing the effective
periodic potential V() averaged over temperature oscillations of the atoms
(nuclei). The expansion of V(7)) into the Fourier series has the form [Hirsch
et al. (1965); Baryshevsky (1976); Kagan and Kononets (1970)]

V(i)=Y V(P (1.1)
where 7 is the reciprocal lattice vector of the crystal;
- 1 o —w=(T) —iFF;
V() = g 2 Vio(@)e i Dem
J

is the Fourier component of the potential; here €2 is the crystal unit cell
volume; 7} is the coordinate of the j-type atom (nucleus) in the unit cell;
the square of e=*i(7) is equal to the thermal factor, or the Debye-Waller
factor, known from X-ray and neutron scattering; Vjo(7) is the Fourier
component of the interaction potential between the particle and the atom
whose center of gravity rests in the origin of coordinates.

When a particle of charge te (e is the value of the electron charge) passes
through a crystal, V(7) represents the ordinary Coulomb interaction, while
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Vjo is determined by the expression
4re

[

2

Vio(T) = % — F;(7)],

where z; is the charge of the nucleus located at point 7 in the unit cell;
F;(7T) is the form factor of the atom located at point 7; [Landau and Lifshitz
(1977)).

X

Y

Fig. 1.1 Particle channeling in a crystal

Consider in more detail the case when a particle enters a single crystal
at a certain small angle ¥ with respect to the crystallographic planes (axes)
of the crystal (Fig. 1). If this angle is smaller than the so-called Lindhard
angle, the particle in the crystal moves in the channeling regime [Thompson
(1968); Lindhard (1965); Gemmell (1974)].

Theoretical analysis of the channeling effect should take into account
that when a high-energy particle, for which the wavelength A is much
smaller than the interatomic distance, is incident on a crystal at a small an-
gle 9, the periodicity of chains and planes of the crystal along the direction
of particle motion has almost no influence on the nature of particle mo-
tion [Kagan and Kononets (1970); Baryshevskii and Dubovskaya (1977d);
Kalashnikov and Strikhanov (1975)]. As a result, the particle behavior is
determined by the averaged potential of the crystal axes (planes), which
is constant along the direction of particle incidence and periodic in the
transverse plane.

Direct the z-axis of the coordinate system along the crystal axes
(planes), relative to which the particle moves at a small angle. In this case
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the periodic along the z-axis potential of planes, which describes planar
channeling, can be written as follows [Kagan and Kononets (1970); Bary-
shevskii and Dubovskaya (1977d); Kalashnikov and Strikhanov (1975)]:

V(z) = Z V(2rr,)e 2" (1, = 1, = 0). (1.2)
Axial channeling is described in terms of the two-dimensional periodic in a
transverse plane potential

V(p) = Z V(2r7, e 2T, (1.3)
TL
where p'= (z,y); TL = (72, 7y); 7» = 0.

To determine the influence of a single crystal on a passing relativistic
particle in the general case, it is necessary to study the solution of the
Dirac equation. With this aim in view, it is convenient to convert it into
a second—order equation, very much similar in form to the Schrodinger
equation [Berestetsky et al. (1968)]:

A+ SEV(E) — V) eV (@) e =0, (14)

where p? = (E? — m2c¢*)/c? is the momentum of the particle entering the
crystal; E is its energy; @ are the Dirac matrices; ¢ is the bispinor.

According to (1.4), the effective potential acting on a relativistic par-
ticle is the sum of three terms, one of which increases with the growth of
particle energy E. For these reason, the terms including V2 and & can
be dropped when analyzing spatial and angular distribution of the parti-
cles which have interacted with the crystal. However, when analyzing the
polarization properties of particles transmitted through a crystal, it is cru-
cial that the term containing the matrices @ should be taken into account
[Baryshevsky (1980d)].

Dropping the terms proportional to V2 and &, from (1.4) we obtain the
following equation

[EQAT —-p*+ ;Evoﬂ Y(7) =0. (1.5)

Upon dividing (1.5) first by 2m and then by 2m~ (v = E/mc? is the particle
Lorentz factor), we can recast it in two forms:

h2
g V@) 07 = ). (16)
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and
h2
2mey
where e = p?/2m; ¢/ = p?/2m~y = ey~ 1. Recall that p? = (E? — m?ct) /%
Equation (1.6) coincides with the nonrelativistic Schrodinger equation
for a particle moving in a potential growing with the increase in the par-

ticle energy. Equation (1.7) coincides with the Schrodinger equation for a
particle with a relativistic mass m-~.

Ay + V(F)| () = p(r), (L.7)

The eigenfunctions of the Dirac (Schrodinger) equations with a periodic
potential are known to be the Bloch functions [Callaway (1964)]. Hence, an
arbitrary solution of equations (1.4)-(1.7) is described by the superpositions
of the Bloch functions. This fact makes it possible to draw some general
conclusions about the nature of the particle-crystal interaction. Further
we follow the line of reasoning given in [Sommerfeld and Bethe (1938)] for
the case of the interaction between non-relativistic electrons and a crystal,
which is also suitable for our case due to the mathematical equivalence of
equations (1.4) (1.7) and the non-relativistic Schrodinger equation.

Let a beam of particles with the momentum p fall on a plane—parallel
crystal plate bounded by the planes z = 0 and z = L (see Fig. 1.1). The
corresponding plane wave that describes the incident particle is determined

by the expression !

Yo (7) = exp(ipr) = exp(ipLp + p.2), (1.8)

where g is the vector with the components z and y; the z-axis is directed
into the interior of the crystal perpendicular to its entrance surface. For
simplicity, we shall further assume that the crystal lattice is rectangular
and has the lattice constants a, b, ¢ in the directions x, y, z, respectively.

The interaction between the wave 1)y and a crystal gives rise to sec-
ondary waves. The potential V equals zero outside the crystal, and the
secondary waves can be represented as a superposition of the eigenfunc-
tions of (1.6), (1.7) when V = 0, i.e., as a superposition of plane waves.
Therefore outside the crystal on the side of incidence, i.e. at z > 0, there
are the waves reflected from the crystal, which have the form

wrcf = Z An exp[i(ﬁlnﬁf pznz)] . (19)

The transversal components of the momentum p’,, are still arbitrary.
As (1.9) should describe the particle flow moving to the left of the crystal,

1Unless otherwise stated, assume that & =c = 1.
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the values of p,, are always positive. Moreover, since the energy of a
scattered particle equals the energy of an incident particle, the momentum

= \/Ez—pin—m2 = \/pQ—pin~

So, within the range z < 0, the wave function

is

Y =0 + Pref - (1.10)
On the other side of the crystal, at z > L, there is a transmitted wave alone

where p,, = /p? — 1},

Inside the plate, the potential V' (7) differs from zero. The eigenfunctions
are the Bloch waves, and the general solution inside the crystal is described
by the superposition of the Bloch waves. It is known that the Bloch wave
for band n can be written accurate to the normalization factor in the form:

Gin(F) = € (F) (112)
where & is the reduced quasimomentum; u,, () is the periodic function
with the period of the crystal. The function u,, (7) is likely to be expanded
into a Fourier series. As a result, (1. 12) can be represented as

Vien (7 Z anw(7) expli(R + 7)7 (1.13)

where 7 is the reciprocal lattlce vector with the components 7, = A/a,
Ty = p/b, . = v/c (A, p, v are integral numbers, running over the integers
from —o0 to +00).

Near the plate surface the wave function and its first derivative in the z
direction should be continuous. The continuity condition implies that the
superposition of the functions (1.3), which describes the wave in a crystal
should only contain such Bloch functions for which the sum of vector £, and
a certain reciprocal lattice vector 277 equals p’ , i.e., K1 + 27791 =P\ -

Thus, the arbitrary solution of (1.6), (1.7) inside a crystal can also be
represented as the superposition of plane waves.

Since inside the plate the wave function contains plane waves with
transversal momenta K, + 277, due to the boundary conditions at the

= L surface, the waves having the same transversal momenta should
propagate from a crystal into vacuum. As a consequence behind the plate
(z>1))

Y=Y A'(FL)expli(pL + 2n7L) 7 explip. (712, (1.14)

L
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where p,(71) = \/p? — (P + 277 L)?; before the plate (z < 0)

Y= T4 AL explitp + 27 )7 x
T

exp[—ip.(7L)z]. (1.15)

An important result (which was already emphasized in [Sommerfeld and
Bethe (1938)]) follows from equalities (1.14), (1.15): the direction of scat-
tered waves leaving a plane—parallel plate is uniquely determined by the in-
cident direction and the magnitude of the momentum (energy, wavelength)
of the incident particles in the same way as in the elementary kinematic
Laue theory of interference developed for thin plates, when the effects of
wave refraction may be neglected, namely the projection of the momentum
of each scattered wave onto the crystal surface differs from the correspond-
ing value for the incident wave by a reciprocal lattice vector 277, . The
possible refraction only leads to the redistribution of intensity among the
scattered waves.

This conclusion is valid for any particles interacting with a single—
crystal plate and any angles of particle entrance into the crystal (even for
those smaller than the Lindhard angle). It means that the channeling phe-
nomenon is just a particular case of diffraction by a periodically arranged
set of scatterers (see also [Thompson (1968)]).

1.2 Principles of the Quantum Theory of Channeling

The possibility to describe the interaction of fast particles with a crystal
in terms of an averaged potential (1.2), (1.3) enables carrying out a more
detailed analysis of the peculiarities of their transmission through a crystal.
A thorough quantum mechanical study of this problem on the basis of a
time-dependent density matrix (temporal) is given by Kagan and Kononetz
in [Kagan and Kononets (1970, 1973, 1974)]. A similar problem in a station-
ary representation of wave scattering by a crystal was examined by Kalash-
nikov and Strikhanov in [Kalashnikov and Strikhanov (1975); Kalashnikov
et al. (1985)] who scrutinized the extreme case of particle scattering by
a one plane (axis). Further we will follow the analysis performed by the
author together with Dubovskaya [Baryshevsky and Dubovskaya (1976a);
Baryshevskii and Dubovskaya (1977d)].

First of all, we shall make use of the fact that in the case of axial
channeling, due to the constant character of the potential (1.2), (1.3) along
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the z-axis (in the case of planar channeling, along the y- and z-axes), the
particle motion in these directions is free and can be characterized by a well-
defined momentum. As a consequence, it is possible to separate variables
in (1.6) and (1.7) and then analyze the equations, which depend only on
the coordinates relative to which the potential V' is periodic. Thus, in the
axial case from (1.6) we obtain

*iAp + V(D) | ¥nr(P) = Ennthnn(P) - (1.16)

The two—dimensional Bloch functions 1, (p) (one-dimensional in the pla-
nar case) are the eigenfunctions of (1.16). The corresponding eigenvalues
are €.

Expand the function ¢ (7) into the eigenfunctions which are determined
by equation (1.16):

P(7) = Z/d%’bw (2) U (7). (1.17)

Substitution of (1.16) into (1.6), further multiplication of (1.6) by %2, (p)
and its integration with respect to p with due account of the orthogonality
condition

/¢:m(ﬁ)¢n%’ (ﬁ)dZP = (Snn’fs(’%a - /ZC”), (1.18)
gives the equation determining the quantities by, (z):
1 02
=5 5pa0ni(2) = (€ = Eni)bur(2). (1.19)

The solutions of (1.19) are plane waves
bnz(z) ~ explLip.,(R)z], (1.20)

where the momentum p.,(K) = 2m(e —enr), le, pa(R) =
V/p? — 2menz. (Recall that p is the momentum of a particle incident on a
crystal.) So, the general solutions of (1.6) in a crystal can be written as the
superposition:

Y(r) = Z/émwm(ﬁ) explip.n (R)2]d*# . (1.21)

The waves of the form exp[—ip.,(R)z] are not included into the superposi-
tion because they describe the mirror reflected waves whose amplitudes for
particles incident at not a very small angle relative to the crystal surface are
negligible. At the entrance surface of the crystal (z = 0), it is necessary to
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join the superposition of (1.19) and the solution of (1.10), where the mirror
reflected waves are also neglected. Thus, at z = 0, we have the equality

exp(ifLp) =Y / Prining (7). (1.22)

Multiplying (1.22) by %7,,..(7) and integrating it with respect to d*p, we
directly find the expansion coefficients

bz = [ expliBL 73 (D). (1.23)

Now make use of the fact that the Bloch function can be written in the
form

¢nﬁ(ﬁ) = eXP(Zgﬁ)Unﬁ(m )

where u,z(p) is the function periodic in a transverse plane. The integration
with respect to p'in (1.23) is split into the sum of integrals over the unit
cells and then (1.23) can be written as follows

énk’ = Zé(ﬁl_ — K- 27T7TJ_)CTLF€'; (124)
27m)2 R
ne = ? /em“’wi‘m(p)d% (1.25)

As R is the reduced momentum, (1.24) means the requirement of the
equality of vector K and the reduced part of the transversal momentum of
the incident particle g, — 277, . It follows from (1.24) and (1.25) that the
wave function of a particle inside a crystal (1.21) can be written in the form

U(7) D Cnitbnz(9) exp(ipzn2), (1.26)

where & = p; — 277 (7L is chosen from the condition of reduction of p
to the first Brillouin zone); p., = \/p? — 2menz.

If a particle moves in a regime of planar channeling, then the motion
along the y-axis is also free (the z-axis is directed perpendicular to the
family of planes, along which the particle is channeled). In this case

w(fj) = Z Cnnwnn(l')eipyyeipznz; (127)
n
2r (%, *
Cnk = — elpwwd)nli(m)dx’ (128)
a Jo

where a is the lattice spacing along the z-axis; k = p, — 277,
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Let us present the expressions relating the Bloch functions to the lo-
calized Wannier functions, which come in handy when analyzing the be-
havior of a channeled particle. A detailed treatment of their properties
for a three—dimensional case is given in [Callaway (1964)]. In the one-and
two—-dimensional cases, which are of interest for us, the Wannier function
centered in a well with the coordinate of its center g, (x,,) is determined
as follows:

Walf = i) = = [ € P () (1.29)

Tpn) = \/g/eimmd)nn(z)dn

Integration with respect to k is made within the first Brillouin zone.

or

The Bloch functions expressed in terms of the Wannier functions have
the form

¢m(ﬁ) = \/§Z iﬁﬁmW ( m);

m

wnn “ o Z GZKIMW J? — Z‘m) . (130)

In normalizing in a finite volume, the factor v/S/2m (y/a/27) should be
replaced by 1/v/N(1/v/N,); N(N,) is the number of unit cells (the number
of crystal spacings) in the (x, y) plane (along the z-axis). Equalities (1.26)—
(1.28) enable analyzing the features of behavior of fast particles in a crystal
in the general case.

Now consider a wave produced by a particle behind a crystal. According
to (1.14) it is necessary to find the explicit form of the coefficients A'(7)).
For this purpose join the solutions of (1.26) and (1.14) in the z = L plane:

> cngtnr(p)ePrl =D A7)l Pt Op i ()L (1.31)

Substitute the expansion of the Bloch function ,z(p) into Fourier series
into (1.31) (see (1.13)):

wrm ﬁ) Zavm 7TJ. ‘ N+2ﬂTL)p

anz(TL) = g/sunz(ﬁ)e_”ﬂﬁ.



10 Channeling, Radiation and Reactions in Crystals under High Energy

Since (1.31) should be fulfilled at an arbitrary point p, it will hold if the
coefficients of the identical exponents on the right and left sides of (1.31)
are equal. As a result, we have

A/(FJ_) = Z Cngang(’]_"oj_ + FJ_)ei(pz”_pZ(T*))L s (132)
n
where 7o, =p| — K.

The coefficients A’(7 ) have the meaning of the probability amplitudes
to find a particle with the transversal momentum p|, + 7, in the wave
which has passed through a crystal, and, hence, they actually determine
the angular distribution of particles behind the crystal.

The expressions obtained above make it possible to determine in the
general case all the required characteristics of particles in a crystal and
outside it and study the features of the reactions they initiate.

1.3 The Energy—Band Spectrum of Electrons and Positrons
Channeled in a Single Crystal

Give a more detailed treatment of the structure of a particle wave function
¥(7) in a crystal, which is described by equality (1.26). According to (1.26)
(7) is represented as the superposition of the Bloch functions correspond-
ing to a potential periodic in a transverse plane. The contribution of each
wave is determined by the coefficient c¢,,, whose squared absolute value
defines the probability to find a particle in the state of the band energy
spectrum nk. The formation of the superposition (1.26) at the particle
entrance into the crystal is due to the fact that there is a quasi-momentum,
not a momentum remaining in a crystal. As a consequence the state with
the defined momentum, which describes the particle falling upon the crys-
tal is not stationary inside the crystal. As a result, upon entering into the
crystal a particle (for instance, a muon) does not appear to be in some
specified band state, but populates the whole set of such states.

To understand the character of the band energy spectrum of channeled
particles and the features of its population, it is important to have quantita-
tive results for the stated quantities, which have been obtained by using real
interplanar potentials. As demonstrated in [Baryshevsky and Chevganov
(1979)], such quite exact calculations for channeled particles can be carried
out, using a quasi-classical WKB (Wentzel-Kramer-Brillouin) method. A
detailed treatment of the band spectrum theory in the quasi-classical ap-
proximation for planar channeling was given by I.D. Feranchuk and B.A.
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Chevganov.

First, pay attention to the fact that the general dispersion equation,
which defines the band spectrum of a particle in a one-dimensional periodic
potential can be obtained without any approximations [Dykhne (1961)].
Indeed, in the range where ¢’ > V(x), two linearly independent solutions
of equation (1.16) correspond to every value of €. Let f and f* denote
these solutions, respectively. Then the general solution of equation (1.16)
at Id <z < (I4+1)d, Il = 0,1 may be represented as

pi(z) = c1f(z) + caf " (). (1.33)

Translation to the range (I + 1)d < < (I + 2)d transforms both function
f and f* into a linear superposition of the same functions, i.e.,

fle+d)=Df(x)+ Rf*(x),

[f(x+d)=D*f"(z)+ R f(x). (1.34)
From the the periodicity condition follows |D|?> = 1 + |R|?. Then
pip1(e) = @i(x+d) = co(Df + Rf") + co(D"f* + R*f), (1.3

and in accordance with the Bloch theorem, ¢;41 = €**%p;(z), where & is
the quasimomentum.

As the functions f and f* are independent, (1.35) yields the system of
equations

c1D + o R* = ¢,
ClR + CQD* = Cgeiﬁd . (136)

The condition of the existence of a nontrivial solution of the system
(Eq. (1.36)) leads to the desired dispersion equation.

cos kd = |D|cos p(e), where D(e) = |D(e)]e*®. (1.37)

For convenience sake, instead of the quantities R and D, we shall further
use the coefficients of reflection R; and transmission D; related to them,
which can be determined in a conventional manner. For example, for a wave
passing through a potential barrier from the right to the left, we obtain

f(@) + Bof*(z) = Dif(z + d),

ie.,
1 Ry ;
D=—, R= 7, Dj=|De"©
D17 D17 1 ‘ 1|€ )
1
cos kd = —— cos 1 (€) . (1.38)

| D1
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To determine the explicit form of the coefficient Dy, it is necessary to
turn to a certain approximation and find the functions f and f*. Here
the quasiclassical approximation is applied with the accuracy for the given
equation determined by the parameter [Pokrovskii and Khalatnikov (1961)]
¢ ~ 1/n?, where n is the number of bound levels in an isolated potential
well coinciding with the channel potential. In the stated approximation,
the functions f and f* have the form

B et S p(@)da . ) B e—i S p(x)dz
BT B /)
p(z) = \/2E(e' — V(x)). (1.39)

Within the range ¢’ < Vj,.x, the coefficient D1 is determined by a well—
known expression which is true when |D;| < 1:

|IDi|~e ™, Ri=1l, o) =o01().

Here
o1 = /EO 2E(e' = V(z))dz, 1= /m 2E(V(z) —€')dx.

Location of the turning points x1, 2, x3 is presented in Fig. 1.2, the energy
is counted off from the minimum of the potential.

V(x)

Vmax

e

Fig. 1.2 Location of the turning points
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In contrast to the classical case, the reflection coefficient is nonzero in
the range &’ > Viyax too. The method for calculating Dy in the quasiclas-
sical approximation at €’ > Vi,.x developed in [Dykhne (1961); Pokrovskii
and Khalatnikov (1961)] is based on application of the path of integration,
which passes through the complex turning points defined by the following
equalities

V() =¢, Z=ld+iz, 1=01,2,.... (1.40)

Without reproducing the calculations carried out in [Pokrovskii and Kha-
latnikov (1961)] (see also [Dykhne (1961)]), we only present the expression
for the reflection coefficient

Dy = exp {z * R V(x))dz} . (1.41)

If the function V(x) is symmetrical with respect to the line z = d/2
as it usually occurs for real potentials, then the path of integration can be
chosen so that the quantities |D;| and ¢1(g’), which we are concerned with,
would be represented as real integrals:

/2

p1(e) = op(e') = V2E( —V(x))dx, |Di|=e"", (1.42)

—d/2

Yo d ) d ]
Ty =2 2E | e/ =V §—|—zy dy, zo=§—|—zy0.
0

When the energy of transverse motion is close to the top of the potential
barrier, (1.41) and (1.42) for D; are not applicable. We intend to obtain
the formulas, which are valid at & & Vj,ax and go over to (1.41) or (1.42)
in the corresponding limiting cases.?

At the top of the barrier,

where

d d
V) % Vo — ki, k=200, ny=am L,

and the Schrédinger equation in this case has the analytical solution

.

() = A1 Dy (167 5 VAN) + B1D_ 1 (21677 VAN, (1.43)
where D,,(z) is the parabolic cylinder function;

5/ - Vmax
k

2 A similar investigation was performed in [Fok (1948)] for a different problem and only
for the case when €’ > Vipax.

1
A =V2kE; m:fi—%\f)\xg, 2=~
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On the right of the potential barrier, i.e., at ;1 > 0, the functions D,,
and D_,,_1 asymptotically go into functions f and f*, correspondingly,
which are determined by (1.39). As we are concerned with the coefficients
of reflection and transmission at the singular barrier alone, let us assume
that By = 0. Then at z1 V4\ > 1,

2
o(x) ~ A exp i (?zf - \/);\:co In Vdhz;

v/ ANz?

H, ff) j%exp(i/omlpdx>. (1.44)

Upon translation to the region x; < 0, the function ¢(z) is transformed as
follows [Gradstein and Ryzhik (1980)):

() = Ay D (VAz 1™ = Ay [Dm(\%ﬁzle’”/‘*)

_F@) e”mD_m_l(\%ﬁxle”M)] (1.45)

and (at |21 v4\| > 1) it should asymptotically go into a linear combination
exp(iog —i [ ' pdx) N Bexp(—icro +i [, pdz)

)~ A )
p(z) 7 7
and AlA_l = Dy, BA™! = R;.
Using the known asymptotics of the functions D,, and D_,,_; [Grad-
stein and Ryzhik (1980)], we find

D1:(\/T) 1F<1+ fx()) exp (zoo ﬁx%),

-
o= (B (L R s o5 4 T3

where I'(z) is the gamma function.
Thus, near the top of the barrier

[Di| = (V2m)~' T <; n ;\F)\xg))

exp (—gxf)\x%)
2 cosh Zv/ Az} ’

exp (—%\f)\x%)

p(") =arg Dy =09 +9; 5argF( + - fxo) . (1.46)
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Now take into account that in the domain of applicability of the solution
of (1.43), the following equalities hold

x3
VA / V2EV(z) —¢elde =71, at & < Viax, (1.47)
T

Yo d
—2/ 2F [s/—V<2+iy>}dy:—T2, at & > Vipax -
0

As a result, with the considered accuracy, the dispersion equation takes the
form

v\l

7'1/2

T1
cos kd = 2 cosh 56 coso, at & < Vpax,

1
cos kd = 2 cosh (27'2) e 2 cosay at & > Vipax (1.48)

and enables plotting a band spectrum within the whole energy range of a
particle.

Consider the limiting cases for which the analytical solution of the equa-
tion can be constructed:
(1) &' < Vinax, 71 > 1. In this case [Feranchuk (1979a)]

1
o= pi (n+2) +e coskd,n=0,1,2,...,

Ene =) + Aepy, (1.49)

K

where 5%0) coincide with the energy levels of the discrete spectrum in the

isolated potential well;

/x V2E[EY —V(2)de =7 <n + ;) ,

and the quantities
Acpe = e ™ &) cos wd < 5521 —e©

determine the energy levels of the allowed band with the width considerably
smaller than the distance between the bands;
(2) € > Vinax, 72 > 1

coskd = (14 e~ ™)coso,

d/2
/ V2E(e,,, —V(x))dr = mn+ kd + 6, (k) ,

—d/2
o < 1,0<kd <, (1.50)

Sn(k) = (=1)"c £ /K2 + 2exp[—7o(cl,)], c=m — kd,
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in this case the energy spectrum consists of wide allowed bands and narrow
forbidden bands with the width

Af':forb =2 QeXP[*TQ(EInH)] ) (151)

and for &’ > Vipayx, €h,. = (kd + )% /2E.

The exact solutions of equation (1.48) were numerically found for a
silicon crystal. The potential obtained in the Moliere approximation and
averaged over temperature oscillations [Gemmell (1974)] was used as an
interplanar potential. The potential obtained in the Moliere approximation
and averaged over temperature oscillations [Gemmell (1974)] was used for
computation. This potential has the form:

for positrons

31 1 /B x
L= 2 T —Biz/a - [t S
g {eerense [ 5 (5=

Biz/a L Biuy z
reretvrse| 5 ()]}

for electrons
d
‘/e—(I) = T Vet <I— 2> +Vmax-

Here 1,4, i, Bi, T, u1 are the potential parameters determined in [Gemmell
(1974)).

It should be noted that when using the programme of numerical solution
of equation (1.48) arranged in the optimum way, plotting of the whole
energy spectrum for electrons and antielectrons (Fig. 3) with 1% accuracy
takes a few minutes on the EC 1030 computers.

Now proceed to considering normalization of the wave functions and the
occupancy coefficients for the energy levels.

According to (1.33) and (1.36), the stationary particle wave function in
a channel p(z) = ¢1 f(z)+ca f*(2), and ¢5 = g(e)e1, q(e) = Ry ! [Di(e)e™ —
1], the coefficient ¢; is determined from the normalizing condition

/2
(L4 g2 T =1, T = / P,
—d/2

where the integrals of rapidly oscillating function f2 and f*? are dropped.
For the energy levels lying far from the top of the potential barrier:

z2 dx /
le p(m) at €' < Vipax

1
J==T( , 1.52
E () = {f d/2 p(w at " > Vinax ( )
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Fig. 1.3 Energy bands calculated for electrons with the energies £ = 28 and 56 MeV.
Channeling along the plane (110) in a silicon crystal. Solid horizontal lines - the positions
of the energy levels in the Moliere potential

where T'(¢') is the classical flight time of particles between the planes. From
this the normalizing constant is

= 1\/E . (1.53)
PV T

If the quantum effects of tunneling and over-barrier reflection are ne-
glected, then |q|? takes on only two values: |g|? = 0 at & > Vjax and
lg|> = 1 at ¢ < Vipax. The normalizing constant abruptly changes by a
factor of v/2 when ¢’ goes from the subbarrier to the over-barrier range,
whereas in reality the quantity |¢|?> smoothly changes from 0 to 1.

This fact also manifests itself within the classical approach to the prob-
lem: in this case when a particle passes through a barrier, the cycle of
particle motion changes abruptly. The false opposition of particles execut-
ing infinite motion and channeled particles appears.
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Fig. 1.4 Energy bands (a) and occupancy coefficients of the energy levels (b) for
positrons at zero entrance angle. Dashed curve - the parabolic potential, dashed hori-
zontal line - the position of levels in it

Formula (1.53) becomes unsuitable in the vicinity of the top of the bar-
rier when a classical cycle T becomes infinite. However, using the analytical
solution of (1.43) enables one to regularize the expressions for the normal-
ization integral (1.53). Indeed, let us introduce a certain passing point
with the coordinate a satisfying the conditions compatible in the case of
quasi-classical motion:

but

44)\<g—a> > 1.

Then we obtain for a potential symmetrical with respect to the d/2-axis

o ro—a d
J%2/ \f|2dx—|—2/ oL
To—a 0 p(fE)

~ 2 [C(E’) /wz |Dm(x\4/ﬁeil%)|2d$
0,
+/0 <p(95) a p0($)> dx] ’ (1-54)

po(x) = \/2E(EI — Vinax + k2?),

where
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—ir /

cle)=q S Ve
-1 ’

e"1™2 . at € > Viax,

and the asymptotics of (1.44) is used for the function D,,(z).
Transform the formula for |g|? allowing for the dispersion equation:

A2+ 1—2cos?0 — 2sinovVA2 — cos2 o

!
Vmax
i 1+ A2 , <
of? = (1.55)
B2 +1—2cos? 09 — 2sinogv/B? — cos? oy ,
]—+ B2 b £ > Vmax)

and
T 1\t Ty _m\ 1
A:(Qcosh?e2) , B:(Qcoshge 2) .

Formulas (1.54) and (1.55) enable one to calculate the normalization
constant ¢; at all possible values of €. It should be pointed out that for the
integral of |D,,|? in (1.54), it is possible to obtain the analytical expression
in terms of the G-function of Meyer [Gradstein and Ryzhik (1980)]. But
it is more reasonable to find this integral numerically, using the integral
representation of D-functions.

Now go over to calculating the occupancy coefficients Q. = |cnx|? of
the energy levels. Consider first those values of E, at which the quantum
mechanical effects are insignificant, as we did when calculating the normal-
ization integral. Then

d/2 T dr

Cnp = 01/ exp [—z/ p(x')dx’ + ipoyr| —=, (1.56)
—d/2 Ty \/M

Poz = Po=0 , (1.57)

and to calculate the integral (1.56) in the given approximation, one can
use the saddle—point method. As a result, at
) Dba

O< _7<Vmax7
ETLH 2E

we find the expression derived in [Ryabov (1970)]:

Cnk = L €xp |:Zp0w$ _Z/ p(,’I}/)d.’I}I] ) (158)
x

EV!(z0)] .

and the saddle point z( is determined by the condition

2
/ _pOac

poz = p(xg), ie., V(zg)=¢€, S5F - (1.59)
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In the case when
2
/ pOm

Enw = op > Vimax O &= 5p <0,

(1.59) does not have real roots (recall that for electrons, as well as for
positrons, the energy is counted off from the potential minimum), but the
solution zg = xg + iyp always exists in a complex plane. Appearance of
the imaginary part of the saddle point coordinate means, in fact, the ex-
ponential attenuation of the occupancy coefficients in these energy bands.
Analytical continuation of quasiclassical wave functions makes it possible
to obtain the following expression for the occupancy coefficients:

mler|? ;P
—, at 0< — == < Vinax,
E|V/(x0)‘ a Enk 2F max
el o AR, Va2
ElV'(20)|
p2
Qnr = at e — 2% S Voo, (1.60)

nkKk 2E

meL® o /2Bl VOt mldy—2p0su0
EV'(20)] ’

. P
v T o
and at any pg,, the complex turning point zj is defined by the equality

2
Ehw = o = V().

Expression (1.60) becomes inapplicable at |V'(zg| = 0, i.e., when the
saddle point is located either near the top of the barrier or near the bottom
of the potential well. In the vicinity of these points, the real potential is
approximated by a parabola, and the values of @, in this energy band can
be calculated, using analytical solutions of the Schrédinger equation:

Y1 = Al[Dml (LC \4/ 4)\1) + D,mlfl(llit Y 4)\1)] N

at <0,

2
! pOa:
——=2~0
fnn T op T
2
02 = AoDpy, (z1e7 15 V/ANg), e — Dz oy (1.61)

where
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1 Ao €’
m2:_7+Q77 )\172:m7
2

d d
kl :2‘///(0), kg :2V// - 5 r1 =T — —.
2 2
The coefficients in linear combinations of the parabolic cylinder functions
in (1.61) are chosen on condition that at |mj 2| > 1, the functions i o

should go over to a quasi-classical solution

exp| i / p(z)da].

1
Vp(z)

Equation (1.60) enables one to calculate the occupancy coefficients of the
energy levels within the whole energy range (Fig. 1.4).
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Chapter 2

A Channeled Fast Particle as a
Two-Dimensional (One-Dimensional)
Relativistic Atom

2.1 Spontaneous Photon Radiation in Radiation Transi-
tions Between the Bands of Transverse Energy of Chan-
neled Particles

Transverse motion of a channeled particle is characterized by a distinct band
energy spectrum (see Fig. 3). The bands deep in the wells are very narrow.
In this case it is possible to speak of discrete levels in a well. Kalashnikov,
Koptelov and Ryazanov in [Kalashnikov et al. (1972, 1975)] put forward
the idea that the emission of X-ray and ~-radiation may occur through
radiative capture of the electron entering a crystal at the levels of transverse
motion in a well formed by the axis (plane). According to [Vorobiev et al.
(1975)] at the transition of a channeled electron with the energy of the
order of a few mega electron-volts between the levels in a well, one should
expect the emission of optical radiation. A detailed treatment carried out
by the author together with Dubovskaya in [Baryshevsky and Dubovskaya
(1976a); Baryshevskii and Dubovskaya (1977d, 1976a)] demonstrated that
the stated above effects of photon formation are a particular case of the
general mechanism of y-quantum emission at radiative transitions between
the energy bands of the transverse motion of particles passing through a
crystal, which occurs for both electrons and positrons.

Within the framework of the quantum mechanical correspondence prin-
ciple every radiative transition may be described as the radiation of a cer-
tain classical oscillator. Since a particle has a transversal momentum, we
shall deal with a moving one- or two-dimensional ”atom” whose radiation
spectrum is considerably influenced by the Doppler effect [Baryshevskii and
Dubovskaya (1976a)]. From the viewpoint of the classical theory the possi-
bility of the induction of «-radiation by channeled electrons and positrons

23



24 Channeling, Radiation and Reactions in Crystals under High Energy

and the importance of the Doppler effect in this process were pointed out by
Kumakhov [Kumakhov (1976)]. Note, however, that the idea of the induc-
tion of X-ray and ~-radiation at radiative transitions between the energy
bands of transverse motion of relativistic particles in crystals still was not
articulated in this work.

Interestingly enough, that the concept of the possibility of optical and
soft X-ray radiation of diffracted particles in crystals at interband tran-
sition was expressed in [Hirsch et al. (1965)]. But only in [Baryshevsky
and Dubovskaya (1976a); Kumakhov (1976); Baryshevskii and Dubovskaya
(1976a)|the authors came to clear awareness of the crucial role of the
Doppler effect causing the transformation of relatively low-frequency par-
ticle oscillations in a crystal (characteristic frequencies are in the optical
and soft X-ray spectral regions) into hard X-ray and ~-radiation, whose
frequency increases with the growth of particle energy.

The major characteristics of the radiation produced by channeled par-
ticles may be deduced by the simple reasoning given below [Baryshevskii
and Dubovskaya (1977d, 1976a)].

Let a particle with the momentum p and the energy F fall upon a plane-
parallel crystal plate. Its collision with the crystal results in the emission of
a photon with the energy w and momentum k. In the final state the particle
energy and momentum take on the values F7 and p;. It is important to
remember that if the reaction proceeds in an arbitrary constant field, the
energy (not the momentum) of the system is conserved. Thus, for particle
energies we have the equality

E=F +w. (2.1)

Due to the periodicity in a transverse plane of the crystal potential respon-
sible for channeling, the transversal component of the momentum retains
accurate to the reciprocal lattice vector of the crystal (see Chapter I),

PL=r+k+70. (2.2)

In the longitudinal direction, the potential responsible for channeling is
constant, and the particle has a certain longitudinal momentum p,,, (see
Chapter I), so

Dzn = Dizn + kzn(kz) ) (23)

where n(k,) is the refractive index of the crystal, still considered to be real.
According to the analysis made in [Ginzburg (1940)] the photon mo-
mentum in a medium is kn. In the representation of (2.2), (2.3) we have
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taken into account the fact that at radiation in a finite plate the transver-
sal component of the momentum does not change through refraction at the
boundary, but the longitudinal component of the photon momentum un-
dergoes an abrupt change. Equalities (2.2), (2.3) follow from the rigorous
theory of radiation in a plate of thickness L (see Chapter I).

Consider thoroughly equality (2.3) determining the change in the par-
ticle longitudinal momentum through photon emission. Write the explicit
form of (2.3) in terms of the particle energy. According to Chapter I, section

2
Pzn = V p2 - 2m5n/~c(E)a Pizf = \/p% - Qmsfﬁl (El)a

k is the reduced quasi-momentum corresponding to the transversal momen-

tum of the particle in the initial state p; ; k1 is the quasi-momentum of the
particle in the final state, which is obtained from (2.2) by reduction of py
to the first Brillouin zone. Using the equalities for p,,, and pi.,, equation
(2.3) can be written in the form

VE2 —m?2 —2me,.(F) = \/E% —m? —2meyy, (Er) + kon(ky).  (24)

As the total particle energy is much greater than the energy associated with
the transversal motion of a particle in a crystal, it is possible to expand the
square roots in equality (2.4).

In the most interesting case in consideration of radiation under channel-
ing of particles with the energy less than a few gigaelectronvolts w < E, E;.
As a result (2.4) can be recast as

w[l — An(w) cos¥] — %(em —€pry) =0. (2.5)
In writing (2.5), it is assumed that cos? in the expression for n(k,) =
n(wcosd) ~ n(w) is equal to unity due to the fact that for relativistic
particles the effective angle of photon radiation is

m 1
19/\4—:7 1 = Vg,
i3 7<< , B=w

From (2.5) follows

N (Enw — Efm)'y_l
YT Bn(w)cosd (2:6)
To clarify the meaning of equality (2.6), let us compare it with the
expression determining the frequency of photons emitted by an oscillator
moving in a medium:
Q

Y= 1 — Bn(w)cos?’

2.7)
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where Q is the oscillator frequency in the laboratory frame of reference;
QO = Qo/1 — 2 = Qpy~1; Qp is the oscillator frequency in its rest frame.
Comparing (2.6) and (2.7), one can notice that a particle under channeling
conditions can be considered as a moving in a medium oscillator having the
following frequency in its rest frame (i.e., the frame with a zero longitudinal
particle velocity)

QOnf =&nk —Efry - (28)

Thus, the frequency €, is determined by the difference of energies be-
tween the discrete zones (levels) of particle transverse motion [Baryshevskii
and Dubovskaya (1976a)]. In the laboratory frame the frequency of such
an oscillator is

an = (arm - 5fr€1)771 = glrm - 63%1 : (2'9)

It should be pointed out that unlike a conventional oscillator, the fre-
quency of the oscillator correlated with a channeled particle in the rest
frame depends on the particle energy owing to the fact that the value of
the potential u.(p), produced by crystal axes (planes) depends on the par-
ticle energy u.(p) = yu(p) (uc(p) is the potential of axes (planes) in the
laboratory frame). In this regard it is interesting that equation (1.16) can
be treated as the equation describing the spectrum of a particle transverse
motion in the coordinate system where its longitudinal momentum is equal
to zero.

To be more specific, suppose that a particle undergoes transitions be-
tween the zones of transverse motion located inside the well (see Figure
Channeling Figure 3). In this case the energy zones may be treated as
discrete levels. Their dependence on the particle energy can be found ex-
plicitly for the simplest cases. Let, for example, a potential well be rectan-
gular. Then g, = m%n?/2md? (n = 1,2,3, ... : d is the well width). At the
transition between the levels with spe01ﬁed Values of (n, f), the frequency
Qn¢ ~ ! and the frequency of a forward-emitted photon (without regard
to the refraction effect) is

w=2(e,—€5)y= 2d2 ——(n* - fAE (2.10)

Thus, the radiation frequency increases linearly with the increase in the
particle energy, and for €, — ey < m it is always w < E.

If we consider the transition between the level located at the well edge
(en ~ vu, u is the well depth) and the lower state (for example, ¢ =
72 /2md?), then w = 2uy?, and the maximum photon frequency in this
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case increases quadratically with increasing energy. At the energies close to
m? /u, the frequency w is comparable to F, and in (2.4) it is important that
a significant change in E; should be taken into account. At the transitions
between the levels located at the well edge n ~ f ~ /7, en—€f ~ /7. Asa
consequence, w ~ v%/2. The frequency of a forward-emitted photon exhibits
the same energy-dependent behavior pattern when moving in an oscillatory
well [Kumakhov (1977)], as well as in a quasi-classical approximation for
the transition between neighboring levels [Zhevago (1978)].

However, the stated energy-dependent behavior of the frequency w holds
true only in the absence of refraction and absorption of photons (the re-
fractive index is n = 1). If recall that n is different from unity, equality
(2.6) in fact turns into the equation determining the value of the frequency
w. As a result, it is possible that additional frequencies determined by
the dependence of the refractive index of a medium on the frequency of a
produced photon appear in the radiation spectrum of a channeled particle,
i.e., the complex and anomalous Doppler effect may arise [Baryshevsky and
Dubovskaya (1976a); Baryshevskii and Dubovskaya (1976a)]. In the case
under study, due to the above mentioned similarity of the laws governing
the process of photon emission by a channeled particle and those concern-
ing the process of the photon emission by a moving atom, the theory of the
complex and anomalous Doppler effects is formed in a perfect analogy with
the that given by Frank in [Frank (1942, 1959, 1969, 1979)] for the case
of moving atoms. According to [Frank (1942)], the region of the complex
photon spectrum existence is determined by the condition

v cos U
Ww) =7
where W (w) = dw/dk is the photon group velocity.

In the X-ray and harder spectral ranges n—1 < 107°. Hence, W is close
to the velocity of light in a vacuum. In order to observe the manifestation
of a few frequencies within the stated spectral range, the oscillator in a
medium is to be started up to achieve very high energies. For instance, if
we are concerned about the emission of photon with the energy w > 1keV,
then at ¥ = 1072 rad the particle velocity should satisfy the condition
v > 1— 105, which corresponds to the energies £ > 3-10% m. Such energies
are really difficult to achieve for atoms and nuclei, but at the same time
they are attainable for a channeled electron (positron). Thus, the study of
radiation of channeled particles enables us to investigate the complex and
anomalous Doppler effects even within the X-ray spectrum [Baryshevsky
and Dubovskaya (1976a); Baryshevskii and Dubovskaya (1976a)].
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Using (2.6) and the following explicit expression for the refractive index
in the X-ray spectrum far from the characteristic atomic frequencies
wj
22
(w? = 4rzNge*/m is the plasma frequency of the medium; N, is the
number of atoms per 1 cm?), we get the explicit expression for the possible
frequencies of the emitted photons at the transitions n — f inside a well,
when the zone width may be neglected, being considered as a discrete level
in the form
L2 _ 2m(e, —ef) & [Am? (e, — e5)? — 8E%w? (1 — Bcos)|!/?
nf 4E(1 — BcosV) '

According to (2.11) in the spectral range in question, two frequencies of
the emitted photons the difference between which depends on the energy of
the incident particle and the observation angle ¥ correspond to the given
transition. If the difference (¢, —ey) changes with the energy growth slower

n(w) =1

(2.11)

than E2, then for the given nonzero value of the angle ¥, the difference
between the frequencies w® and w® decreases, vanishing at a certain
value of &/ = E, 5.

At E > E,; the frequencies (2.11) become complex. This means that
the radiation of hard photons at a selected angle ¥ is impossible. As there
is a one—to—one correspondence between the frequencies of the emitted pho-
tons and the angle of radiation of y-quanta, it is obvious that for a given
value of wy,r, we obtain the constraints for the possible angles of observa-
tion of this frequency. At ¢ — 0 the threshold energy value grows, and at
¥ = 0 the upper limit (threshold) disappears. In this case (compare with
[Frank (1969)])

E
Wl = {(en —ep)E\/(en—ep)? — wg] —. (2.12)

It follows from (2.12) that certain restrictions are also imposed on the
possible values of the difference of the energies of transitions (e, — €y).
Namely, it is necessary that |e,, — | > wr. At |(g, —e5)| < wg, the fre-
quencies characterizing the transitions between the discrete levels n and
f are not observed in the radiation spectrum. The restrictions obtained
agree well with the criterion of the appearance of the Doppler effect for an
oscillator moving in a medium [Frank (1959)]. If €, — €5 > wy,, then
w? E

(1) E (2)
~ 2(g, — ; ~ . 2.13
Wnf (e Z_:f)m Wn 2(en —ep)m ( )



A Channeled Fast Particle as a 2D (1D) Relativistic Atom 29

This makes it clear that the medium has practically no influence on hard
radiation. Soft radiation is totally dependent on the refractive properties
of the medium. If (¢, —ey) ~ /7 (the oscillatory well, the transitions
between neighboring levels in the quasiclassical case), the frequency wffj) ~
V7, i.e., the frequency goes up slowly with the growth of energy. If the
(2)

f

difference (g, —€y) ~ 7, then w,y = const. It also follows from the apparent

requirement wil’Q) > 0 that in view of (2.11), the transitions to lower energy
levels ey < &, are only possible.

2.2 Complex and Anomalous Doppler Effects in an Absorp-
tion Medium

Now consider the how the radiation spectrum changes of in an absorbing
medium [Baryshevsky and Dubovskaya (1978)]. In this case the refractive
index is complex, and equality (2.3), which in fact shows that the momen-
tum transmitted to the medium ¢, = pzn — P12§ — kzn is zero, does not
hold. However, the smaller g, the greater the probability of photon emis-
sion is. The radiation probability will have its peak value at the y-quantum
frequencies wy, ¢, for which the longitudinal transmitted momentum has a
minimum value.

With the presence of the imaginary part of n and the fulfillment of the
condition w < E, the longitudinal transmitted momentum may be written
as follows:

%(z—:n;{ —et7,) —iwpn (W) cosd,  (2.14)

where n = n’ +in”; n’ is the real part of n; n’ is the imaginary part of n.
According to (2.14), the minimum value of ¢.,¢ is limited by its imaginary
part.

Qonf = w — wfhn'(w) cosV —

Ing.,; = wphn”(w) cos ¥ = 6(w). (2.15)

The corresponding photon frequencies for which the quantity g, is min-
imum, and, hence, the radiation probability is maximum, are determined
from the condition

Regunj = w — whn' cost — L (enx — 47,) = [e[0(w), (2.16)

where |e] < 1.
At € = 0, the condition (2.16) determines the frequencies corresponding
to the frequencies in the center of the given intensity maximum. All other
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frequencies at € # 0 are located in some vicinity on either side of the central
frequency. The radiation intensity corresponding to them is comparable
with the radiation intensity of the central frequency. Therefore equation
(2.16) in fact determines the radiation spectrum and may be recast as
follows

Eni — Epry T €0 (wny)

nf = . 2.1
Wns 1 — Bn/(wyy) cost (2.17)

Note that solving equation (2.17), one should bear in mind that the
reduced quasi-momentum &; depends on the frequency wyy. If |E 1<z,
€fi, can be expanded into a series: efz, = efz + Ej_ﬁﬁé:ff{ + ... (EJ_ =
Wnfily; T = ky/lkLl; ﬁg&?fg) is the particle velocity in the state fz).
Near the extremums of the bands the first expansion term is zero, and it is
necessary to allow for the following terms of the series. Taking account of
the stated dependence is crucial when analyzing the formation of photons
through intraband transitions, when the difference ¢, — €z, is determined
just by the correction terms Elﬁ,gsf,g +....

Expressions (2.16), (2.17) are obtained without using the explicit form
of the refractive index n(w), so they are also applicable for the analysis
of the radiation spectrum of «-quanta in the frequency range, where a
large contribution to n(w) comes from the crystal nuclei with, for example,
low resonances. As in this case the medium under consideration is strongly
absorbing, the entire frequency spectrum is given by (2.17) which allows for
the imaginary part of the refractive index. Though, as it has already been
pointed out, in order to find central frequencies in the intensity maxima, it
is sufficient to make use of equation (2.5).

The refractive index within the X-ray frequency range for Mossbauer
crystals can be represented in the form

, WL (w—wo)
T T M e ) r 2 (2.18)

_ N 241 _T ) ; _ : ;
where p = 503 201 Thar, far; far is the Lamb-Mossbauer factor; o, is the

internal conversion coefficient; I and Iy are the spins of the initial and
final states of the nucleus, respectively; wg is the resonant frequency of the
nuclear y-transition; I' is the nuclear level width.

It was stated in [Kolpakov (1973)] that the refractive index in a Moss-
bauer crystal (2.18) may become greater than unity. This enables obser-
vation of the Vavilov-Cherenkov effect, and hence, the anomalous Doppler
effect for short-wavelength photons at which the emitting particle moves to
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a higher energy level. Substituting (2.18) into (2.5), we obtain the following
expression for central frequencies in the maximum;

Bw% n wl(w — wo)w B
2w (w—wp)?2+T2%/4

According to (2.18) n’(w) can become greater than unity only in a nar-

w—wpcost+ Qpp =0. (2.19)

row range near the resonant frequency wq (for instance, for °"FeAw =
w—wp = 10T [Kolpakov (1973)]. Using this fact, the frequencies determined
by the anomalous Doppler effect can be sought in the form w = wy — A,
where A < wg. It is clear from (2.19) that in this range the equation is
solvable, when (2, ¢ is less than zero, which corresponds to the system tran-
sition to a higher energy level through radiation. Consequently, from (2.19)
we may obtain the following expression for anomalous Doppler frequencies
corresponding to the central frequencies in the intensity maximum

(1,2) (1.2) Iz py? T2
Wy SEwo— AT =wo— o F [<2A> — 4} , (2.20)

where

Far from the frequency wg the contribution of the resonance term in
the refractive index may be neglected. Finally we turn back to the case
of radiation considered above, which is described by formula (2.11), from
which we obtain the other two solutions of equation (2.19) corresponding
to the normal Doppler frequencies. In view of (2.20) at

~1
E < E' =m|Quf| [V2wo H—ﬁ—i
T 2 22

T(Llf’Q) become complex. As a result, at such energies the
anomalous Doppler effect is impossible.

Interestingly enough, the phenomenon of photon emission accompanied
by the excitation of the emitting system itself does not only arise as a result
of the anomalous Doppler effect, or when the velocity of the source is higher

than the velocity of light in a vacuum. This process also occurs when the

the frequencies w

oscillator moves at subluminal velocity in a medium with n < 1, if the coher-
ent radiation length is limited (for example, due to the photon absorption
in the medium, the presence of the crystal boundaries, multiple scattering
[Baryshevsky and Dubovskaya (1978)]). Indeed, in the case of absorbing
medium there is a whole set of frequencies for which ¢.,; ~ wInn. As a
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result the radiation intensities for these frequencies are comparable with
one another, so from (2.21) we may obtain the following expression for a
photon spectrum

02 _ Qo+ eldwng)] £ {20 + |eldwn)]* = 2w (1 = Beosd) )
nfo 2(1 — Bcos)

1/2

(2.21)
It follows from (2.21) that in the case of absorbing medium the photon
radiation accompanied by the excitation of the emitting system itself be-
comes possible. Indeed, in view of (2.21) the following conditions should
be fulfilled to make this process possible:

wnf > 0;[eld(wns) > [Qngl;
[ 7 + |€]0(wnf)]” — 202 (1 — Beos ) > 0. (2.22)
The conditions (2.22) may be reduced to one
lel6(Wnyp) > [Qns| + V2w (1 — Beosd)2. (2.23)

It is seen from the expression for frequency €1, ¢ that with the increase in
the energy of the channeled particle the requirement (2.23) becomes less
strict and proves to be feasible for a larger number of levels n and f of
the discrete spectrum of particle transverse motion. If the condition (2.23)
is not satisfied, the radiation corresponding to the transition between the
given energy levels n and f of the transverse motion will only occur when
the system moves to a lower energy level.

As it has already been mentioned, the presence of the target bound-
aries and multiple scattering of a channeled particle along with absorption,
lead to limitation of the minimum value of the longitudinal component
of the momentum transmitted to the medium, and hence, to limitation
of the coherent length. Thus, for instance, for thin crystal plates with
L < (wn” cos¥)~! the maximum coherent length [ ~ 1/¢.,¢ determining
the process of radiation cannot exceed L. The frequency spectrum in this
case is described by formula (2.21) with §(w) replaced by L~1.

Note also that with the presence of boundaries, the momentum trans-
mitted along the normal to the crystal surface, should no longer be zero (or
277,) even for a thick nonabsorbing medium. In this case the frequency
spectrum can be written in the form

L02) _ (l;} (W) — Q) £ [(l;}(w) — Q)% — 203 (1 — B cos¥)]'/?
nfo 2(1 — Bcos)

where Ly (W) = (Pzn — P12y — kzn) ™1

(2.24)



A Channeled Fast Particle as a 2D (1D) Relativistic Atom 33

So, radiation of a channeled particle accompanied by the excitation of
the emitting system is possible in a medium with n < 1 not only for a source
moving at the velocity greater than the velocity of light in vacuum but also
for an oscillator moving with subluminal velocity. From the viewpoint of
physics the phenomenon in question can be understood, taking into account
the fact that the limitation of the coherent length, and hence, the magnitude
of the longitudinal momentum transmitted to the medium gives rise to
uncertainty in the real part of such a momentum. From the conservation
laws follows that this is equivalent to the appearance of uncertainty in the
value of the energy of the particle transverse motion. If the uncertainty in
the energy which results from the limitation of the coherent length exceeds
the distance between the discrete levels of transverse motion in a laboratory
system, it will cause virtual elimination of the distinction between the levels
in the given interval of changes in the transverse momentum. Consequently,
the system through radiation can move to both lower and higher levels of
transverse motion.

Until now we considered a crystal as an optically isotropic medium for
photons. Note, however, that a crystal can exhibit optical anisotropy in
both optical and X-ray (and shorter wavelength) spectral ranges [Bary-
shevsky (1976)]. When analyzing the radiation process, the refractive in-
dex in conservation laws means one of the major target refractive indices
[Baryshevskii and Dubovskaya (1976a)]. In a short wavelength range the
optical anisotropy of crystals is manifest in the case diffraction of y-quanta
in them. Then both real and imaginary parts of the crystal refractive in-
dex strongly depend on the direction of photon propagation, which results
in a significant change in spectral, angular and polarization characteristics
of all types of radiation excited by a charged particle in a crystal [[Bary-
shevsky and Dubovskaya (1976a); Baryshevskii and Dubovskaya (1976a);
Baryshevsky et al. (1978, 1980a, 1979); Baryshevsky et al. (1980c)]] (see
(3.3)).

It should be pointed out that radiation associated with the transitions
between the levels of discrete spectrum of the particle transverse motion in
a crystal may be treated as spontaneous radiation of a channeled particle.
When a crystal is put in the area occupied by an electromagnetic field (for,
example, light radiation), one can stimulate induced transitions between
the stated levels, which will give rise to induced radiation [Baryshevskii
and Dubovskaya (1977d); Beloshitsky and Kumakhov (1977)].
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Chapter 3

The Foundations of the Theory of
v-quanta Emission in Crystals under
Channeling Conditions

3.1 The Cross Section of Photon Generation by Particles
in an External Field

Theoretical study of the process of photon production by channeled parti-
cles has been carried out from various viewpoints. The emission of y-quanta
in crystals with the thicknesses smaller than the length of transformation of
the wave function of an incident particle from a plane wave to a superposi-
tion of the Bloch waves was examined in [Kalashnikov and Koptelov (1979);
Kalashnikov and Olchak (1979); Kalashnikov and Strikhanov (1980)]. Ac-
cording to [Kalashnikov and Koptelov (1979); Kalashnikov and Olchak
(1979); Kalashnikov and Strikhanov (1980)] the process of electron emission
for such thicknesses can be analyzed in terms of the concept of radiative
capture of a particle incident on a crystal into the channeling regime. In
[Kumakhov (1976)], there considered radiation in an infinite crystal within
the framework of the classical model of a particle motion in a parabolic
potential. Within the framework of this model there is only one radia-
tion frequency corresponding to the Doppler shifted frequency of particle
oscillation in a harmonic well involved in the formation of the radiation
spectrum. Further analysis of the problem given in [Kumakhov (1977);
Zhevago (1978); Beloshitsky and Kumakhov (1978); Bazylev and Zhevago
(1977)] was also performed for an infinite crystal.

At the same time as far back as in our early works [Baryshevsky and
Dubovskaya (1976a); Baryshevskii and Dubovskaya (1977d, 1976a)], de-
voted to the problem of photon radiation under channeling conditions, it
was shown that in a real potential the radiation spectrum is produced by
frequencies corresponding to a wide range of the particle transitions be-
tween the levels of transverse motion. Such transitions result in the fact

35
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that when exploring the radiation spectrum at a given angle to the direction
of a particle motion, a discrete set of spectral lines is to be observed. That
spectrum was experimentally revealed in [Swent et al. (1979); Alguard
et al. (1979); Cue et al. (1980)]. Moreover, according to [Baryshevsky
and Dubovskaya (1976a); Baryshevskii and Dubovskaya (1977d); Kagan
and Kononets (1973, 1974)], when a particle enters the crystal, the whole
set of transverse motion levels is necessarily populated. As a result, not
only sub-barrier transitions (inside a well) but also the over-barrier transi-
tions, as well as the transitions from over-barrier to sub-barrier states take
part in the spectrum formation. Over-barrier states located near the bar-
rier edge are characterized by a wide regions of transverse motion, which
was completely ignored in [Kumakhov (1977); Zhevago (1978); Beloshitsky
and Kumakhov (1978); Bazylev and Zhevago (1977)], and it was only in
[Bazylev et al. (1980, 1981)] where this fact was taken into consideration.

The population of all the above-mentioned states depends on the type
of a particle, the angle at which it enters the crystal, and the shape of
a well. This fact has a considerable impact on the shape of the spec-
trum formed by particles during radiative transitions between the levels of
transverse motion, which was convincingly demonstrated by Bayer, Katkov
and Strakhovenko by using numerical calculations [Baier et al. (1979)]. In
[Podgoretsky (1980); Akhiezer et al. (1979)] the important role of the radi-
ation produced through over-barrier transitions has also been emphasized
recently.

According to [Baryshevsky and Dubovskaya (1976a); Baryshevskii and
Dubovskaya (1977d, 1976a)], refraction, absorption, and diffraction of pho-
tons in crystals also considerably affect the radiative spectrum. Below
we presented the results obtained in our investigations [Baryshevsky and
Dubovskaya (1976a); Baryshevskii and Dubovskaya (1977d, 1976a); Bary-
shevsky et al. (1978, 1980a)].

Let a beam of charged particles with the momentum p’ and energy E
fall on a crystal of volume V. As a result of collision with the crystal,
the particle momentum changes and the particle, undergoing acceleration,
emits radiation. Theoretical analysis of the process under study implies
that each particle corresponds to a wave packet, produced in a generator
(particle accelerator) at a certain moment t. Due to the particle interaction
with a medium, at long distances from the crystal in addition to a primary
wave packet diverging spherical waves which describe the scattered and
newly produced particles (in this case - photons) also appear (Fig. 5). To
calculate the cross-section, it is necessary to know the transition probability
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per unit time for the process, when one particle scattered in a constant field
produces in its final state a certain number of other particles. In view of
the quantum mechanical theory of reactions it may be represented by the
general formula of the form (see, for example, [Berestetsky et al. (1968)])
(h=c=1):

d*pq
(27)32E,

AW = 216(Ey — E)| M2 2E.c3 H (3.1)

where F is the energy of the initial particle; Ef is the energy of the final
state; p, and E, are the momenta and energies of the final particles; £3
is the normalization volume; My; is the amplitude of scattering from the
initial 7 to the final f state; the overline means averaging over the spin states
of the particles involved in the reaction. The scattering cross section do is
obtained by dividing dW by the incident particle flux density j = v/L3,
where v = |p]/E is the velocity of the primary particle. as a result, we get

d*pa
do = 216(Ey — E)|[M4|? 2‘1 H @n)PaE, (3.2)

In the case of interest there is a particle and a photon in the final state.
Write the radiation cross-section as
dPpdk

do =2wé(F — B)| My, k)2t
o 7T( 1tw )‘ (pla hﬁ)' 8(27T)6pE1w’

(3.3)

—

where p is the momentum of the primary particle (electron, positron); k
is the photon momentum; w is the photon frequency; Ey and p; are the
energy and momentum of the particle in the final state.

The matrix element M describing the process of photon emission in an
arbitrary external field can be represented in the form

MEED =e [0 OFAT OUP P, @)

where W (7), W, (7) are the exact solutions of the Dirac equation for parti-
cle scattermg in the external field, having different asymptotics far from the
crystal: \I/; (7), for the primary particle (asymptotics type — an incident
plane wave plus diverging spherical waves), W (), for the final particle
(the asymptotics type — an incident plane wave plus converging spherical
waves); Z%_)(F) is the vector potential of the emitted photon, being the
exact solution of Maxwell equations and describing photon scattering by
a crystal (the asymptotic type — an incident plane wave plus converging
spherical wave) [Baryshevskii and Dubovskaya (1977d); Baryshevskii and
Feranchuk (1974)].
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The wave functions of all the particles are normalized to one particle
within the volume £3. T he terms 1/v2EL3 1/y/2E,£3 and 1/v2wL3 ap-
pearing in them are shown explicitly,and they are included in the definitions
of dW and do (see(3.3)). Thus, if the photon-crystal interaction is ignored,
the vector potential A'%_)(F) has the form [Berestetsky et al. (1968)]

A7) = Ve ™, (3.5)

where € is the photon polarization vector. Then the matrix element in
(3.4) is written as follows:

MG, p) = eVarMy, = e/an / B (Pdete VD (@ ddr. (3.6)

To find the explicit form for do, one should know the wave functions (&),
(The general analysis of the characteristics of the functions describing par-
ticle scattering by a crystal was given in (). Considering the photon radi-
ation in a crystal, when solving the Dirac equation it is necessary (as well
as in bremsstrahlung by a screened Coulomb potential [Olsen and Maxi-
mon (1959)]) to take into account the terms proportional to «. This occurs
through the fact that for fast particles the matrix element & involved in
(3.6) is the vector, whose direction is close to k. Therefore the major term
@€ proves to be small, and the correction terms have the same order of
magnitude [Berestetsky et al. (1968)].
Write the Dirac equation (1.4) in the form:
(A, +p® = 2BV (M]Y(7) = —iaVV (7 (7). (3.7)
The term proportional to V2 may still be ignored. Dividing both sides of
equation (3.7) by 2m-y, we obtain
LA V)| W) = 5
— e =V(r 7)) = —
2my
Remember that (see (1.7))

@VVEeFE.  (38)

2my

2

e — p
2mry
and U (7) is sought as
() = VO ) + v (), (3.9)

where () (7) satisfies equation (3.8) with a zero right-hand side, and
UMW (7) is the desired correction. The equation for ¥(®) () does not in-
clude spin matrices. Therefore the spin state of a particle passing through
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a crystal cannot change in this approximation: it coincides with the spin
state of a particle in a plane wave incident on a crystal. It is convenient to
extract a bispinor amplitude describing the particle spin state in its explicit
form, and represent U(7) as follows [Berestetsky et al. (1968)]:

V() = P [u()ep(7) + 03 (M), (3.10)

where u(p) is the constant bispinor amplitude of the plane wave incident
on the crystal normalized by the condition

u(p)u(p) = 2m. (3.11)
Substituting (3.10) into (3.8) and retaining the first-order terms over &VV/,
we come to the equation
1 T
T A+ V-V (1)
8t Y V)|

i

QmWU@(dVV(f'))sop(ﬁ : (3.12)

To solve (3.12), make use of the fact that the function ¢, () satisfies the
equation

1 )
A — o r) = . 1
At Y V()| () =0 (313)
Application of the operation V to equation (3.13) gives
1 ) -
A DV -V V) = (VY. (1)

Upon multiplying (3.14) by

T

(P)a

and comparing the result with (3.12), we obtain immediately

oy (F) = =5 —— @V, (Fu(p). (3.15)

_meyu

i

2mry
Thus, finally
= P o
U(7) =e'? (1 - maV) op(Fu(p) . (3.16)

It should be emphasized that, as demonstrated by the direct comparison
between the expansion of (3.16) and the exact solution of the Dirac equa-
tion for the Kronig-Penney model [Baryshevskii and Dubovskaya (1977d)],
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relation (3.16) in the case of not very thick crystals is always suitable (ap-
plicable) (for example, for E = 1 GeV the thickness isl < 1 cm, for E = 500
keV +1 MeV [ ~ 10731072 c¢m). In fact, the stated expansion holds true,
when the parameter /v is small (Q is the characteristic energy of spin-
orbit interaction between the incident particle spin and the crystal axis; v
is the particle velocity).

Substitute the wave functions (3.16) into the expression for the matrix
element My; (see (3.6)):

-/ d%‘“p”’“‘%ﬂm( *m“v) o5 ()
v (11— (+)
x aer (1 2E ) (P u(p), (3.17)

My = u* (Bae: I, + (@e2) (@l) + (als) (@e)]up, (3.18)

where, by analogy with [Olsen and Maximon (1959)], the following quanti-
ties are introduced

b= [T @

T i e tar

f= o [Tl OV

T i —iqr —)x

b= g [T e 0 (3.19)

qg=p1+ k— p is the transmitted momentum.

For further consideration it should be noted that the integrals in (3.19)
are related to each other [Olsen and Maximon (1959)].

Integration by parts in the equality for I gives:

i

fi= g [ OV D Pl
b iy o) (7)d?
s [ ATV
4 i (0 (7
SF, /e p Py (F)d (3.20)

Comparison of (3.20) and (3.19) gives

Iij=—I—-L1. (3.21)
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To further simplify the matrix element in (3.18), it is convenient to cast
(3.18), using two-component spinor functions:

1
ulf) = VETm ( = (&ﬁp)> v
_ 1 . [(0&
u(pl):\/bm< Elm(_.ﬁpl)>w1,a— (5,0) , (3.22)

Ei+m

where & are the Pauli matrices; w(wp) is the two-component spinor
[Berestetsky et al. (1968)]; 71, is the unit vector in the § direction; 7i,, is
the same for 7. Substitution of (3.22) into (3.18), gives quite an awkward
expression for M ;, which, however, simplifies at £, Eq > m. The calcula-
tions in this approximation are perfectly analogous to those performed by
Olsen and Maximon in [Olsen and Maximon (1959)], making it possible to
write My; as follows:

E — . or— s
My :2,/E—wf {(F + Ey)(ger) + iwd[g x €]} w. (3.23)
1
The vector
G=9.+3 (3.24)
where
. - 1, .
Gir=ligt3imrh, g1= 2En”h ;

the symbol (L E) means the projection of the corresponding vector onto
the plane perpendicular to the direction of the photon momentum E; the
symbol || is for the projection of the vector onto the k direction; 7 is the
unit vector in the & direction.

Upon introducing the polarization density matrices of the initial p and
the final p; electrons, we obtain for the average square of the matrix element
involved in the cross-section of (3.3),

IMyil> = Tr pMFTpy M,

—2\/7{E—|—E1 er) +iwdlg x €]}

=348,  m=z0+69), (3.25)

where
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—

£(&)) is the polarization vector of the particle in the initial (final) state;
0 <& & < 1. After taking the trace appearing in (3.25), we get

- E (1 . 2 s
IMyil? = 4E—1 {2w29|2 +2EE, (1 +£€))|ge™ |

45w {|GPEE - 2(56) (5°6) } + wErRe {

—

{
~2(70)(5"9)] &} - wERe {[I%(E®) — 2

+ 5wl (BE + Br&) (i x &) + Swhe |5 (Ei€
HEE ) (17 x &) - 2Ag(Erd + BE))(F" (18 x &) }

+%w [wu +EE) (8% &) + (B + E1)(€ x &) x (i€ x &)

+(E+EB)(E+8) —2me {(BE+ BE)D | (x5} . (3:20)

Using (3.25) and (3.26), we get the required expression for the cross-section
of the photon radiation in a crystal allowing for polarization of all the
particles involved in the reaction.

3, 73
do = e*5(By +w — E)SppM+p1M4 dpidk (3.27)

2m)ipEiw
The relationships (3.26) and (3.27) solve in the general form the problem
of finding do.
If we are not concerned about the polarization of the final particle, then
with & in (3.27) assumed to be zero, the entire expression (3.27) should to
be multiplied by 2.

3.2 Photon Generation in Crystals under Channeling Con-
ditions

We now turn to a more detailed treatment of the cross-section of (3.27).
Let us take into account that in (3.19) the linear dimensions of the do-
main of integration only exceed the linear dimensions of the crystal by the
magnitude of the vacuum coherence length

1 2EF-w)

lcoh ~ B)
qz w m

(3.28)

(A thorough treatment of the properties of I .p see in [Ter-Mikaelian (1969,
1972)]). For this reason, analyzing the radiation process in a crystal target
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with lateral dimensions much larger than its thickness, we can apply the
expressions describing scattering of a plane wave by a crystal plate with
infinite lateral dimensions, i.e., the functions considered in (). Substituting
these functions into (3.19) with due account of the relation

D) = e ()
and integrating it with respect to the momentum p7, we get the below
expression for the spectral-angular distribution of the number of photons

emitted by a channeled particle dN = %da (S is the area of the target
surface):

dwdQ)  4Ar2 - J q:jf

1 —exp(— zqznfL) w? E
n 2 1
X{ Gons 2 iy + 2 (1 + )

2
VN w 2R . e 2
X (Gnf€s)(G;1€s) + 252 Re[gnfgjf(é“fl) - 2(gnf£)(9jf€1)]
1

+E£1Re {[gn,fgj*f (5€s> - z(g’nfes }
wk R
—ETQRG {[gnfgjf(&es) - (gnfes)(gjffl)]( )

WL . - PR o w
+TE12(gnfgjf)(E§ + E1&)[i€s x €] + 257
~2(Gus (B + B&)) G510, x &)}

527 [w(L+ e, x &1+ (B + By) [[€x &, x &7]]

2E?
+(E+E)(E+&) — 2Re { ((E§ + E1§1> es> H iy X gj*f}} :

where qznf = Dzn — D12y — k. is the longitudinal momentum transmitted
through radiation; Q,; = ¢/, .(E) — €(E) = %(EM(E) — gjx(E)); the
argument F in the notation for the transverse energy of the initial state
emphasizes that the particle in the initial state has the energy F.

In the general two—dimensional case (axial channeling), the following
relations are valid

N T,
an = Cn(ﬁL)C; (ﬁl)a C?L(ﬁL) = \/?L elprdj;km(dep) (330)

where N is the number of two—dimensional unit cells in a transverse plane
of the crystal; s is the area of the unit cell. When a particle is channeled

(3.29)

Re { (s7)7) (1€ + EG i€, x @]
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along the planes located periodically along the z-axis:

an = Cn(pa:)c;(pz); cn(pw) = ﬁA eipmxw:m(x)dxv (331)

where N, is the number of the crystal periods along the z-axis; a is the
lattice spacing along the x-axis;
1

Ynw(z) = \/foeimunn (z)

is the Bloch function describing the transverse motion in zone n of a particle

with the reduced quasi-momentum
K=Pe———;
a
the integral number [ is found from the condition

27l

Pz — ——
a

™
< —.
a

In the two—dimensional case
1 ...
1/’m$(/7) = NiLGMPUm(ﬁ)

is the Bloch function with £ = p| — 7 ; 71 is obtained from the condition
of the reduction of p| to the first Brillouin zone.
Vector g,y in a two-dimensional (axial) case has the form

1 - 1

Gng = Ging +Gns = 5pWnr = 55 —(Long + 0, gling — mit) i) ,

Fang = =iNL [ B3 (9 i (D),

Ilnf = NL/eiikLﬁlb;k‘k’(ﬁ)wnﬁ(ﬁ)dzp; ﬁgL];f :pﬁgL;;a (332)

where 77, is the unit vector along the z-axis direction; recall that the symbol
(L k ) stands for the projection of the corresponding vector onto the plane
perpendicular to the direction of the photon momentum k. In the one—
dimensional (planar) case, vector

- 1 -
Gns = 55V = 35

Doy = —iN, / Sk (@) W( )

(Iznfna; + (p Do) Leling — miyling),

J /0 €KY () (), (3.33)
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where D, = p,Ti;; M, is the unit vector along the z-axis;
o
K1 =Dy — kg — ; )
ng is found from the condition of the reduction of p, — k, to the first

Brillouin zone, i.e.,
‘pa: - kz - @ < z )
a a
Ki=pL— EJ_ —To; To is found from the condition of the reduction of p’, — EL
to the first Brillouin zone.

The formulas obtained above enable one to describe angular, spectral
and polarization properties of radiation formed in a crystal in detail.

Let particles incident on a crystal be nonpolarized (¢ = 0), and the
polarization of final particles be of no interest to us. As has already been
mentioned, in this case it should be assumed that £&; = 0 and the expression
for the cross section should be multiplied by two. As a result, we obtain
N, _ eineZanei%L ll —exp(igl;pL) | |1 — eXP(innfL)l (3.34)
dwdQ 272 Ty TCons

nfj
2 2
oy + 2 Gor @) G5760) + falic x EXlihs x 57}
According to (3.34), the spectral angular distribution of photons oscil-
lates with the change in the crystal thickness L at frequencies an deter-
mined by the differences between the energies of the transverse motion levels
which are populated when a particle enters the crystal. These oscillations
of the radiation intensity are quite similar to those observed at radiation
of atoms at the given angle under pulse-excitation into the superposition
of states. If the characteristic frequencies an and the crystal thickness L
are such that Q,;L > 1, the averaging of (3.34) over the thickness spread
leads to the averaging of oscillations, and it should be assumed that in
(3.34) j = 0 (integration of (3.34) with respect to dw or d) also leads to
vanishing of the oscillations). The characteristic oscillation frequencies in
the transverse plane
oLt VL
T d d

where T is the oscillation period in the transverse plane; v is the velocity
of transverse motion; d is the channel width (cm); ¢, is the Lindhard angle;
vy = Y9rc (c is the velocity of light), at ¢ =1 v, = ¥;,. Consequently, the

inequality QL > 1 can be cast as follows [Kagan and Kononets (1970)]
LY,

1 .
> (3.35)
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At 97 ~ 10~ for positrons with the energy 1 GeV and d = 1078 cm
the inequality holds true for the thicknesses L > 10~* cm (in the absence
of degeneracy of energy levels).

Thus, if L > 1/Q,;, the sum in (3.34) should only contain the terms
with n = j, which leads to the following relation

d*Ns - _ @ZQ 1 — exp(—igznsL) |”
dwdS) o 212 n Qenf

(3.36)

W2
{QEQ 02 4 2 50025+ i x &g % 31 -

If we do not concern ourselves Wlth the polarlzation of an emitted photon,
(3.36) is to be summed over the polarization states:

d’N  ew 1 — exp(—igznsL) ’2

dwdQ — 2712 — n Qang
E w? w?
2— + — Gl + =Tl . .
<[(22 + %) 1920s + Seldins ] (3.37)
Recall that ) )

§Lnf = EWLnf 2o (I2nf +sz_kIInf)
. 1 - m
Gins = 55 Wins = — 55 U s - (3.38)

The transferred momentum g,y in the planar case can be written as follows
2

~_ Y |92E— 2 mo_ / _
Qenf = 3(F — o) [19 (E —wcos® )+ Z Qinfﬁ-Qem(E)] Qs
2
= _ Y l9xE- 2 mo
= S [P w0 )+ | = () — e, (1),

Uy = %(am(E) — e, (B1)). (3.39)

As far as we still analyze the process of photon radiation within the range of

frequencies w and crystal thicknesses, where the absorption and refraction

of emitted quanta may be neglected, the expressions involved in (3.36) and

(3.37) with high accuracy can be recast in the form

1 —exp(—igznsL) 2
9znf

~ 2 Lo(qany) -

As a consequence,
d*N 2wl w? 9 E
S — nn _’n 2 —'n % |2
dwdQ 7 anQ {213%'9 i1+ 25 1Gases |

w2 . o
2E2 [i€s X €][iGnf X gnf]} 3(qany) s (3.40)
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d*N d®N, 2wl E  w?
_— = s = - nn 27 _ g " 2
dwdt 2w dwd? " x anQ {( B Ef) 19ns]
w? o,
+ 52 |Gins | 0(dzng) - (3.41)
1

If expression (3.41) only includes the sub-barrier transitions, then it
coincides with that derived in [Zhevago (1978)]. Such a restriction, however,
as we have pointed out repeatedly [Baryshevsky and Dubovskaya (1976a);
Baryshevskii and Dubovskaya (1977d); Baryshevsky et al. (1978)], does
not fit the real experimental conditions, when at particle entering at a
certain angle to the axis (plane), the above-barrier states (regions) are also
necessarily populated.

In a most typical case, photons of frequency w < E are emitted through
channeling. If in this case the energies ¢, and 5., < m (i.e., the trans-
verse motion in the system with zero longitudinal velocity of a particle is
nonrelativistic, which occurs for particles, whose energy is less than a few
gigaelectronvolts), then expressions (3.40), (3.41) simplify considerably:

d*’N;  2e*wL L
= Z Qun|FinfEl?0(w(l — Beos?) — Quy), (3.42)
nf
d*N  2¢*wL U
T = D Qunlins POl = Beosd) = Qug),  (343)
nf

where 8 = v, /c and at ¢ = 1, the value of 8 = v,; v, is the longitudinal par-
ticle velocity; the component g in this approximation does not contribute
to (3.42), (3.43).

It is worthy of mention that the quantity V_[}J_nf = fgnf + Peakling
appearing in the expression for vector G|, ¢ can be represented in several
equivalent forms. Using the notations agreed in [Baryshevsky et al. (1978)],
we have the following expression for W,

= o . R L 2mng
W'yn = an’yn - nm['yna Pn =D — Tng;, (344)

ng is obtained by reduction of vector p, — k, to the first Brillouin zone, i.e.,
|pz7kx72ﬂ%| < g;

I - @ —iMm * dz:
= € B Unp,, ()i, (2)d;
0

1 (%  ox@-—n d
L, = 7‘/0 e—z%@xuwl,w(m)%u* (x)dx; (3.45)

7
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1 is found from the condition |p, — 2| < ~; Integration of the expression

a
for I,, by parts gives

27 (1 — no)
S = Ly (3.46)
where
Y A T Y d
I;n:_l/o et xunplx(x)%uwz(x)dx.

From the definitions of ng and [ follows that 27"1

_ 2mng
= pz — K, and = =
pz — ki — k1. Hence, we can write:

a
T = /0 ikt Ty ()t (2)da

Ly = (ks + k1 = K)yy — I s

. ¢ —1 K1—K)X, * d
L, = —2/ e hatmmmmy (x)%uwa: (x)dx. (3.47)
0
Recall that the Bloch function is
1

Yoy, (T) = Pyu(T) = \/Teimuwz (T); Uyp, (T) = Uqyi(T);

x

Vi, () = Yy, (T) = \/%eimzunmz (z).  (3.48)

Consequently,
Unp, =V Na€™ "o, (2); Unpy, (2) = v/ Noe ™" 54y, (). (3.49)
Substituting (3.49) into (3.47), we obtain the following equality from (3.44):
Wy = (5= Pe) Iy + Lyyita- (3.50)

As in (3.42) (see also (9) in [Baryshevsky et al. (1978)]) vector W is
multiplied by the photon polarization vector €5, (p— p,) in (3.50) can be

replaced by (P — Pi) 1% !

1We obtained formula (3.42) in [Baryshevsky et al. (1978)] in a more general form

. 1—exp(—iqsn )L
(with the term 1oexp(Zidong) L
dznf

published, the coincident formula was derived in [Bazylev et al. (1980, 1981)]. The
authors of [Bazylev et al. (1980, 1981)] first did not notice that their relations coincide
with those we had obtained before and declared our theory invalid. In [Baryshevsky
(1980d); Baryshevsky et al. (1980e)] we proved that the criticism from the authors of
[Bazylev et al. (1980, 1981)] is unfounded. Now compare (3.42) and the coincident

instead of d-function). Two years after the work was
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The presence of d-functions in the derived expressions enables one to
easily find spectral or angular distribution of emitted photons. It should be
emphasized that the finite width of the bands for transverse motion leads
to the fact that the radiation in question appears not only at transitions
between different levels but also at the transitions within a given band.
In the case of narrow bands the corresponding radiation for high-energy
particles lies within the optical spectrum. For wide over-barrier bands these
transitions cause radiation in the X-ray and shorter wavelength spectra.
As follows from the presence of the J-function in expressions (3.42), (3.43),
the corresponding equation defining the photon frequency at the intraband
transition has the form

(1 —BcosVw — (), —€np,) =0. (3.54)

nKi1

At fixed frequency, this equation determines the radiation angle of a quan-
tum. Note that in solving (3.54) in the case of over-barrier states it is vital
to remember that €, depends on w and .

formula (9) in [Baryshevsky et al. (1978)] with formula (7) derived in [Bazylev et al.
(1980, 1981)]. According to [Bazylev et al. (1980, 1981)] the formula for spectral-angular
distribution of radiation at spontaneous transitions in the planar case has the form

2w _ e2w
dwdQ ~ 2m

> {eolily (ko) 2 sin? o + exlj7 (ko)
f

0>+ E2 0e4(BY)
2 OE;

37 (k) cospf? } 5 [w( ) — Gif| - (3.51)
The notations in (3.51) are the same as in [Bazylev et al. (1980, 1981)]. If a particle
populates only one level, (3.42) could differ from (3.51) by the expression between the
braces in (3.51), and by the ﬁ |an &s|%. We will demonstrate that there is no difference.
Consider mw-polarization. In this case the polarization vector €s = €r is in the plane
formed by the particle and photon momenta. As a consequence, €7, = —9, ¥ is the
photon radiation angle; éx7iy ~ cos¢. Then

N 2
W, 1 2
TrEnf = |Jing¥ — Elgnf cosp| . (3.52)
It is clear from the definition of Ji,p and Iy, j*) and j(*) that () = LI3 .

]Z(;)(kz) = J;‘f and, hence, the formulae for spectral-angular distribution of radiation
coincide. Consider o-polarization. Now €s = é, is perpendicular to the plane made up
by the momenta of a photon and a particle. As a result, €57, = 0, €57z ~ siny and

2

Eo Wt 1 .
gn :E\IanFSlnz% (3.53)

E

so the formulae coincide completely.
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3.3 Spectral and Angular Distributions of Photons in the
Dipole Approximation

Though simple at first sight, expressions (3.42), (3.43) are rather compli-
cated. Matrix elements Is,s and I1,y defining vector g,s are quite anal-
ogous to matrix elements used in the theory of atomic radiation (see, for
example, [Berestetsky et al. (1968)]). Investigating the properties of ra-
diation in the range where photon frequencies and exit angles are such
that k1o < 1, the exponentials in Iz,y and I,y may be expanded, and
the reduced vectors x and k1 in wave functions may be equated. At the
same time, when solving (3.54), the distinction between x and x; should be
taken into account especially for intrabad transitions. Under the condition
kia < 1e,, canbeexpanded in terms of k. Asaresult, ), —&7,,. ~ ;ki
ki = vk, . Velocity v has the order of magnitude ¥r.c, i.e., v ~ 10% cm/s
for 9;, ~ 10~%. From this vk, ~ 10'2 — 10'% sec™! for k; ~ 107 cm~1!.

The frequency vk, in this case is much smaller than the characteristic fre-

quency of of interband transitions, so the corresponding radiation lies in a
substantially softer spectra (in this case it lies in the optical region even
for particles with energies of the order of 1 GeV ). For this reason, when
analyzing the radiation spectrum in the X-ray and shorter wavelength spec-
tral regions, we shall not take into account intraband transitions, assuming
that kK = k1 in the interband transition frequencies. As a result, equation
(3.44) is easily solvable, and integration of (3.42), (3.44) with respect to
the photon exit angles with the maximum collimation angle ¥ < m/E,
gives in the dipole approximation the following expressions for the spectrum
[Baryshevsky et al. (1980a); Baryshevsky et al. (1980d,b)]:

dN; 2 S 202 w 2
s =L Qi )

2

w 2
+aqr (- ﬂ 0 (% - ans)) ey, (359

dN 2 S 12002 w 2

w2 2
oo (1= 5) ] (% o)) blanr@). (50)

where png = NL [, hnu(9)posx(p)d?p; 6(z) = 1 at z > 0 and 6(z) = 0 at
2 <05 apf(w) = (1= PB)(%2L —1); Wng = Quys/(1 — B) is the maximum
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radiation frequency at the n — f transition. If the collimation angle ¥, =

T

Ccll]cj =L Efj QP [ {1 - Qinf(l s
2
+2§—2f(1 - ﬁ2)2} 8(2 — any (w)0cns (@) - (3.57)

In the particular case when only sub-barrier transitions remain in the
sum over n, f, expression (3.57) turns into the one analyzed in [Zhevago
(1978)].

Now consider the angular distribution. With this aim in view, integrate
(3.42), (3.43) over the frequencies. Under real conditions, the detector regis-
ters the photons within a certain spectral interval w; < w < wy. Integration
within this interval gives
dN, A (1 — Bcos)? — (1 — B?)sin® ¥ cos? p
a7 (1 — Bcos)*

x0[cos ¥ — by, f(w1)]0[byf(we) — cos V], (3.58)

m 1 Qf 62L 2
P < = bn = — 1—* 5 Aszi nn_'n C 937
g bl B( w ) o %;Q [ €517t

aN _A(l_BCOSﬁ)Q—(1—52)Sin21900s2<p
Q- (1 — Bcosv)*

x0[cos ¥ — by f(w1)]0[bpf(w2) — cosV],

2
4 =S8N Qulta P, (3.59)
nf

From formulas (3.58), (3.59) follows the well-known result that the angular
distribution of the radiation from a relativistic particle whose velocity and
acceleration are mutually perpendicular is a universal function independent
of the shape of the potential in which the particle moves [Landau and
Lifshitz (1967)].

The number of y-quanta AN, emitted by a channeled particle in the
frequency interval Aw in the dipole approximation can be estimated as
follows:

AN, ~ eQx%QQ‘LAw,

where x( is the amplitude of particle oscillations in the channel. From
this follows, for example, that the particle with the energy £ ~ 1 GeV
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(2o ~ 1078 cm, Q ~ 10'¢ s71) passing through a silicon plate of length
L ~ 1072 cm in the spectral interval % = 1072 emits the number of quanta
AN, ~ 1072 +10~* in the vicinity of the maximum frequency, and AN,, ~
10~7 + 1075 in the range of X-ray photons with the frequency of the order
of tens of kiloelectron-volts (according to our estimations [Baryshevsky and
Dubovskaya (1976a); Baryshevskii and Dubovskaya (1977d, 1976a)]).

In the case of excitation of resonance nuclear levels the number of quanta
formed in the interval of the order of the level width is important, which
leads for example, for the number of quanta produced in 57 Fe Mossbauer
target to the estimated value of AN,, ~ 107!* quanta [Baryshevskii and
Dubovskaya (1976a)]. The stated values follow from the formulae given in
[Kumakhov (1977)], if taking into account that the estimate is given per
unit length and the entire spectral interval.

It should be emphasized that for numerous applications in solid state
physics and other fields, it is necessary to know the number of photons
in a certain narrow frequency interval, rather than in the entire spectral
interval. As a result, in narrow spectral intervals within the ranges of tens
and hundreds of kiloelectronvolts the so-called parametric radiation often
appears to be much more intense (see Section (4.7).



Chapter 4

The Influence of v-Quanta Refraction
and Diffraction on Angular and
Spectral Characteristics of Radiation
Produced by Particles in Crystals

4.1 Radiation in a Refractive Medium

Consider the theory of photon radiation in crystals when the effects caused
by refraction and diffraction are of importance. The results obtained also
describe radiation of diffracted electrons [Fedorov and Smirnov (1974); Fe-
dorov et al. (1973); Fedorov (1980a); Baryshevsky (1980c,b)].

Refraction and diffraction are significant when the crystal thickness is
L > 1/kln — 1|. As shown in Chapter (1.3), in this case spectral and
angular distributions change drastically. In particular, the effects caused
by diffraction lead to the appearance of radiation at large angles with the
spectrum depending on the effects of anomalous transmission of v-quanta
through a crystal [Baryshevskii (1971)]. Moreover, diffraction gives rise
to a new, quite a vigorous radiation mechanism, the so-called parametric
mechanism for generating y-quanta [Baryshevskii and Feranchuk (1971,
1973, 1976)] (see also [Garibyan and Yan Shi (1972); Avakyan et al. (1975);
Afanas’ev and Aginyan (1978); Feranchuk (1979b)]).

Theoretical description of such phenomena requires (see Chapter (2.2)
finding the transition matrix element M determined by the photon wave
function being the exact solution of homogeneous Maxwell equations de-
scribing propagation of an electromagnetic wave in a medium. It should
be emphasized that the photon wave function of the type A(~) satis-
fies Maxwell equations with the complex conjugate dielectric permittivity
[Baryshevsky (1976)], and ignoring the asymptotic requirements may lead
to the formation of misbehaving wave functions in an absorbing medium.

As before, consider photon emission in a plane-parallel crystal plate. If
the photon exit angle of is not equal to the Wulff-Bragg angle, then in the
X-ray and the frequency ranges with shorter wavelengths, where [n—1| < 1,

53
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the expression for A, has the form [Baryshevskii and Dubovskaya (1977d)]

Aé;)(F) —/ar {éaseil_c'f“efikzn*La(iz)
+€SeiEF€—ikzn*Leikz(n*—l)za(z)e(L _ Z)
&, eiRTemikaLg(y — L)} . (4.1)

According to (4.1) inside the plate with boundaries 0 < z < L
AL (7) = Var g efireibnL, (4.2)

where k; = (k. ,k.n). Comparison of (4.2) and the photon wave function
(3.5) shows that taking into account the refractive effects in matrix elements
is reduced to the substitution of vector ET for vector k. In other words, all
general formulas written out in Chapter (2.2) preserve their form (for this
purpose, we retained the complex conjugation symbol in ¢.,¢). As a result,
for example, at w > FE the spectral-angular distribution of photons has the

form?
d?N, 1 —exp(ig: -fL)
e Y Qi l (ia
dwdQ 2 nfy qzjf
1 —exp(—iGenfL)] i/ on =
<| D Guen@yey. @)
qenf

When the crystal thickness L is much greater than the photon absorption
depth .15 in a crystal, (4.3) simplifies

&N, fw 1
dwdQ 72 Re > Quje™™ st ————(Guye)(Gie) . (4.4)
nfj

Integration of expression (4.3) for the double-differential radiation spectrum
over the angles with maximum opening ¥ equal the collimation angle of
the photon beam that exits the crystal, we obtain the radiation spectrum

1Formula (4.3) is obtained if, when integrating matrix elements only the integrals over
the path inside the crystal are retained, and the integrals over the path in a vacuum
are discarded. The total radiation cross-section including vacuum terms is given in
[Baryshevskii and Dubovskaya (1977d)]. The vacuum terms are important for a soft
spectral range, when the vacuum coherent radiation length appears to be comparable
with the plate thickness or the quantum absorption depth.
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in the in the dipole approximation as

2,,12\12 2
9 nf_w(l_ﬁ n )] +an
dw Z Qnn|Tn | { 2,0/l

wn'n

s
" Q. - —
(14 e 2 k) <arctan Lﬂf + arctan 2an>
n n

_9 72wn”L0 ﬁ_ 0( )_|_l §+

e 9 Qnp f Qnp f % nf
3
2

2
<6 (19% _ anf> Blans) + [201 - 520

- gfé:[f)} + (142

0 Q2

nf nf —2wn’ L
SOLLL R & [1
" + " (I+e )
" 2
o+ (%) . .
xn—— 2 — (&0 =0t &) o (4D)
(% - anr) +(2)
where
R A ¥ S W LY
anp = (1 Bn)(w 1>7wnf_1—ﬁn”

n’ =Ren(w); n” = Imn(w);

if = Bi(—wn"L £+ iLway,f)

2
—FBi |—wn"L+iLlw | oy — Vi ]
2

" 192
6fff = e 2w L {Ez {wn”L +ilw (anf — 2’“)]
—Fi(wn"L £+ iLway,f)} (4.6)

(Fi(2) is the integral exponential function ).

As the explicit form of the refractive index was not used in (4.5), this
equation also holds true for crystals containing resonant nuclei. In this
case it is essential to take account of the photon absorption in a crystal
(the absorption length in such crystals can be of the order of 107° + 1074
cm).
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Allowing for absorption is also necessary when considering radiation in
a relatively soft X-ray spectrum (the absorption length .55 of the photons
with w < 10 keV in a Si crystal proves to be less than 1072 cm (Figure 6).

Figure 6. Spectral distribution of photons in relative units (f = <A

). Photons are emitted by a particle (E = 1 GeV) in Si (110) crystals
(crystal thicknesses in cm). Dashed curves - photon distribution without
absorption; solid curves - photon distribution with account of absorption.

In the limiting case (L > lgps the expression (4.5) for the radiation
spectrum simpliﬁes and takes the form

2
= o S Qi {2 02 + 0

R
—(1-B*n"*)w)?] (arctan % + arctan znﬂanf>
3 V7
+7 920 < 5 anf> O(cng) + [(1 — B°n/?)

o ¥ (%)2 (4.7)

Qs Sy
192 2 N\ 2 ’
(7 *anf) +(57)

w 2w?

where l,,s = m

For radiation at a small angle with respect to the direction of particle
motion the last two terms in (4.7) are small, and the spectral intensity of
radiation is practically proportional to the photon absorption length in a

crystal:

2
Zan|xnf|2 Lo [92 (an

2

% _ o,
—(1— BQn’Q)w)Q] arctan % + arctan 2n7f . (4.8)

dw

"

The analysis shows that at an arbitrary ratio of the crystal thickness
to the photon absorption depth, quite a simple formula may express the
radiation spectrum in an absorbing crystal with high accuracy [Baryshevsky
et al. (1980b)]:

T =) (1= e (-5 )) . (49)
N

where ‘fiw is the radiation spectrum in the absence of absorption, i.e., at
1
n'’ = 0.
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4.2 Optical Radiation Produced by Channeled Particles

The effects associated with photon refraction in a medium in the optical
spectrum, where the refractive index n (the dielectric permittivity e(w))
can be appreciably different from unity, appear to be of particular impor-
tance. Formulae describing radiation of a moving oscillator in a refractive
infinite medium were derived by Frank in [Frank (1942)]. For channeled
(diffracting) particles the presence of boundaries in a crystal is essential.
Classical theory generalizing [Frank (1942)] for the case of photon emission
by an oscillating particle traversing a plate of finite thickness is given by
the author together with .M. Frank. In this case the formula describing
spectral-angular characteristics of radiation of the oscillator moving along
the z-axis and oscillating along the x-axis with the amplitude xy has the

form , Y s
EN W5 [0 12 o R a—
dwd) ~ 4n2he3 {|G1| cos” p|fe(w) g(w) — sin® ¥
HGaPsin 1 = 5y/e() —sut P ISP (310
where

s - exp {Z [w (1 — By/e(w) —sin219> _wo} UL} 4

i {w (1 — By/e(w) — sin? 0) — wo

)

wo is the oscillation frequency of the oscillator in the laboratory system of
coordinates; 8 = v,/c; v, is the velocity along the z-axis;

Gi=q (m +e(w) cosﬂ) cos 1J;

Gy = go ( g(w) — sin219+00819) cos ¥,

o = | (Ve 0ty om0 e (422 )
_ ( £(w) — sin ¥ — e(w) 60819)2 exp (ZL:’\/m)]
g2 = K e(w) — sin® ¥ + cosﬁ)zexp (—ZLCUJ e(w) — sin® 19)

- ( c(w) — sin2 ) — cosﬁ)QeXp (z’L;)\/E(w) _ sin? 19)]

-1
)

-1
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To derive the expression
d*N
dwd$2
describing the distribution of photons produced by a quantum emitter,
suffice it to replace xy by a doubled matrix element of the transition from
the emitter’s coordinate: z3 — 4|z,,7|%; and the oscillation frequency wy by
the transition frequency ;.
Without absorption
sin?[w(1 — B4/e(w) — sin® ) — wp] 52

2v,

|S(L)[* = 4 : (4.11)
[w(l = B1/e(w) — sin? 9 — wp)?

The contribution due to the waves reflected from the vacuum—plate entrance
boundary should also be added to the intensity in (4.10). It is obtained by
replacing f — —f and the sign ”+” between the brackets of the multiplier
appearing in Gy(g) after gy (o) with . In the vicinity of the frequencies

and angles for which y/e(w) — sin® ¥ vanishes, the interference terms may
also gain in importance.

In view of the fact that the path L is finite, every angle ¢ has a cor-
responding frequency spectrum, covering the range Aw, which are close to
the Doppler frequency. Photons with such frequency are emitted within
the finite range of angles A¢ [Frank (1942)]. With increasing L the range
of angles A reduces. Thus, following [Frank (1942)], in our case we have
the below equality for the range Aw in the absence of absorption

Aw = £ 2
1 — Bn(wy, ¥) cos V| — wy 229 o5y L7
dwy

wy (1 — pn(wyg, ¥) cos?d) = wy, (4.12)

where we introduce the refractive index

Ve —sin? 9 \/ e(w)—1
_yersmuy _ 80
n(w,9) | cos I T Teosz9

(4.13)
If we are not concerned with the width of the peak, then with high accuracy

sin?[w(1 — By/e(w) — sin®¥) — wol &

[w(1 — By/e(w) — sin® ) — wo)?

~ %wé(w(l — By/e(w) —sin® ¥) — wp) (4.14)
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and the number of photons emitted by a linear oscillator is defined by
formula

2 2,2,3]
N _ ez {|G1|2cos2 o(Be(w) — 1/ e(w) — sin® ¥)?

dwd) 2mhc3v
+|Go|?*sin? p(1 — By/e(w) — sin? 19)2}

x8(w(1 — By/e(w) —sin?I) — wp) . (4.15)

Find the angular distribution of photons with frequencies w lying in the
range wy < w < wa:

dN e2x?
L Sk, Mo, 0.0

-1

dn(wy,,, ¥) . (4.16)

oy cos ¥

x |1 — Bn(wy, , ) cosd — Pwy,

[e"

where M denotes the curly bracket, appearing in (4.15), taken at the fre-
quency value w = wy,_; the sign 7, reminds that (4.16) is nonzero in the
range of polar angles ¥, which is determined by the direction of the photon
escape with the maximum wy and minimum w; frequencies;

wy,, (1 — pn(wy,,,?)cosd) = wp.

Now consider spectral distribution. Integration of expression (4.15) with
respect to the angle ¢ is reduced to replacing cos? ¢ and sin® ¢ by 7. As a
consequence,

191!\&){
dN 2,.2 dL
= % / {‘G1|2(BE A /57sin219)2 + ‘G2|2
dw 2hc3v

Y min

x(1 — BVe —sin? 19)2} S(w(l — BVe —sin?¥) — wp) sin¥dy, (4.17)

where Umin, Umax are the minimum and maximum angles defining the
boundaries of the angular range within which the radiation is detected.
To determine dN/dw, it is necessary to find the roots of equation

w(l —pBVe—sin®9) —wy =0. (4.18)

From (4.18) follows that

costy g = i\/(”ﬂ_jof —(e—1). (4.19)
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If the radiation propagating at an acute angle relative to the particle ve-
locity is registered, the contribution to (4.17) comes from only one positive
root of (4.19). As a result,

AN e2w?a2L 1 2
:ewxo{|G1|2 <ﬁ€_+°:f)

dw 2cv3 B
2 (Wo\2 | | @’ o
G2 (w ) } ‘1 w | cosdy (4.20)

Here the functions G; and G2, which include the quantities cosv and
Ve — sin? ¥ are expressed in terms of frequency according to (4.18), (4.19),
e.g., Ve —sin?9 = %(1—%) The symbol &y reminds that (4.20) is nonzero
within the frequency range determined by the frequency values of the pho-
tons escaping at the angle ¥, and Ypiy.

Note that to describe the phenomena occurring under the anomalous
Doppler effect, it takes only to replace wy by —wp (in the quantum case
Qpr > 0 under the normal Doppler effect, and €2,y < 0 under the anoma-
lous one) in all the above formulas.

The relations derived simplify appreciably if mirror-reflected waves can
be neglected, i.e., for example, in the case when n(w, 9) slightly differs from
unity. Under such conditions with good accuracy

cos? ¥

(cos? + Ve — sin?¥) .

cos? ¥

(ecos® + /e — sin? 19)2 7

G = Ga|* =

Generalization of formulae (4.10) to the two-dimensional case (axial
channeling) was given by the author together with I.Ya. Dubovskaya.
Spectral-angular distribution of radiation has the form:
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for o -polarization (h =c=1)

2 -
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where

@z =Pz — p1z — k= (1 — B cos )w;

4= = p: — p1z + k: = (1 + B2 cos 9w

Ganf = Don = P1zf — K1z = w(1 = Boyfe(w) —sin® 9) — Qf;
ki = wVe —sin® 95 Gong = Pan — Prag + ki
~ w(1 + B/ e(w) — sin® I) — Q p;

Ay = (1—e(w)) (el — eweol)gy,
ap = \/e(w) —sin®¥; B, = 2Go;
B! = 2cos¥(cost) — \/e(w) — sin® ) ga;

D, = 4dag cosVga; Qny = cn(PL)c}(P1L);
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€|z

71, is the unit vector along the z-axis.
1 *
Foj= g2 N1 / enz(P)A505%(P)d s

for m-polarization
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Al = (EQ(W) cosZ 9 — a%)(e"“““L ’”“[)L)gl,
B, = 2cos¥(e(w) cos? + ap)g1 = 2Gq;

Bl =2cos¥(ag —ecosV)g1; Dr = 4dagcosieg;.
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4.3 Angular Distribution of Radiation Produced by Parti-
cles in a Crystal under Refraction

Let us give a more detailed treatment of dN/dS2 in the case of radiation in a
crystal whose thickness exceeds the photon absorption length in a medium,
i.e., assume that the condition wImn(w)L > 1 is satisfied. In this case
in order to integrate the cross-section (4.4) with respect to frequencies, we
shall make use of the fact that the function 1/|g., ¢|* has a sharp maximum
in the vicinity of the point w,, where Re ¢,y = 0. At the same time other
terms appearing in (4.4) change smoothly with the change in the photon
frequency. Therefore the function before |g.,,¢| = may be factored outside
the integral sign at the maximum point w = wy.
Expand Re ¢, into a series in the vicinity of the point w = wy:

d(Re q.) 1 d%(Req.) 5
Re q, = T(W ) + iﬁ(az - wﬁ) (423)
and expand the limits of integration to the infinite interval. As a result, the
angular distribution of photons emitted by a channeled particle is written

as follows:

e labs(w( ))93
Y _ 5 gy p el

nfa
[ ﬁn( )cosﬁ] —[1—5%n ’2( )] sin? 9 cos?
[1—pBn’ (wf;l)) cos ¥]4
X A p (W5 )0 (w1, w2) (4.24)
(a)

where Zabs(wl9 ) is the absorption length of the photon with the frequency

wl(;l).

Summation over (a) indicates summation over all possible solutions of
equation Re ¢.(w) = 0 in the spectral range of the detector [wy,ws]. The
term A, ¢ is due to the dispersion of the medium, and it has the form

1- ﬁn(wf;l)) cos
‘l—ﬁn( )00519 o.) ﬁcosﬁ(an(w))

Ang(w§?)

_,,(a)
W=wy

-1
1—

(4.25)

(W28 cos 9 [ On(w)
Qpy Oow ) @

The angular distribution of photons for which w(n’ — 1)L > 1, laps < L
is obtained by replacing l,ps in (4.24) with the crystal thickness. Due
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to a particular relationship between the observed frequency and the pho-
ton emission angle, the shape of angular distribution depends significantly
on the frequency value within the detection range (wy,ws). The function
7 (w1, ws) takes account of this circumstance. For example, if the frequen-
cies wy and wy lie in the X-ray spectrum, where

WL
2w?’

the function 7, (w1, ws) may be represented as

n(w)=1-

O(bns(we) —cos?)B(cosV — costy,) at wy <wy < wa,
Na(wi,w2) = < O(bps(wr) — cosP)f(cosV — by p(we)) at wi, ws > wo,
0(bns(we) —cosV)f(cos — by p(wi)) at wo > wi, we,

(4.26)
here wy = w? /Q,¢. The multiplier
(a) W |7
A"f(wﬁ ) ~|1- w(a)Q ’
9 nf
1 an
by, =_(1-—2), 4.27
o) =3 (1-220) (1.27)
where wff‘) is defined by the formula
O \/Q — 2w? (1 — Beosd)
wfga) (4.28)

2(1 — B cos)
According to (4.27), for the radiation angles o, at which

(a) wI
wﬂ > Qinf,
the multiplier Ay, ¢(w, (a )) may be assumed equal to unity and consequently,
the effect of the frequency dispersion of the medium on the angular distri-
bution of quanta may be neglected.
To define the frequency range of the spectrum, where A,y being differ-
ent from unity is of importance, rewrite (4.25) as follows

—1
9 9

A= (1 B ﬂm)S()) (1 _ 5%?)) | (4.29)
Uph(wy ) Wiwy”)

where vpp (wfga)) and W(w;)) are the phase and group velocities of light in

the medium at the frequency w = wfga).
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According to (4.29), the multiplier A, ; becomes essential for photons
with the frequencies, at which the group and phase velocities in a medium
are different. This occurs, for example, in the vicinity of the resonances.

The expression for angular distribution (4.24) simplifies if the condition

2w?
Q7
is fulfilled (e.g. for an electron with the energy E > 100 MeV at ¢ = 0 in

a silicon crystal § < 107°). Then the root of (4.28) may be decomposed,
which gives

5= (1 —Bcos?) < 1

o o Sy
v 1 — pcos?d

for the upper frequency radiation mode and

2 2
@ _ Wi wi 5
Wy ~ 50, (1 + QQ ( + )) (4.31)

for the lower one. In view of (4.31), at the lower mode, the observed photon
frequency is practically independent of the radiation angle 1. As a result,

(4.30)

for w1 < wp < we, the expression for angular distribution takes the form

dN = Zan|xnf| {3 @0, ¢)0 [cos ¥ — b(wo)] 0 [b(wa) — cos ]

nf
6 32 4
+08J§LZ§J[ sin 9 cos® p — ;57]0 sin? ¥ cos ¥ cos?
+Q,, rw? (1 — sin? 9 cos? 0}, (4.32)

where wg = w% [Qns. If w12 > wo, the angular distribution of radiation is
described by (3.58).

At a certain energy E., of a channeled particle (or at a fixed particle
energy for a limiting radiation angle ¥,,,x), being such that the condition

Q7 — 2w (1 — Beosd) =0 (4.33)

is fulfilled, the difference between the frequencies wél) and wff) disappears,

and at an angle Umax a y-quantum with the frequency wy = w? /Q, is
emitted (at the angles > Q,ax, photon emission by channeled particles
is impossible).

Under the conditions of one frequency observation the photon group
velocity W(wp) is equal to the projection of the particle velocity along
the direction of y-quantum emission vcos? [Frank (1942)]. In this case
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expression (4.24) is not applicable for describing angular distribution, as
the first derivative in the expansion of (4.23) to which we confined ourselves
when calculating (4.24) vanishes. Therefore, the quadratic expansion terms
in (4.23) should be taken into account when integrating the differential
cross-section in (4.4) over the frequencies:

Beost [ _dn(w) d*n(w) 5
edq 2 dw Tw dw? ), .. (w —wy) (4.34)
As a result, when the frequency wy = w? /s is within the range

(w1, ws), which is the domain of integration of the detector, the number
of «-quanta emitted by a channeled particle over the angular range A
near the angle ¥ = 9,4, is given by the following expression:

dN w3
T = g 2 Qunleas PVl o) (4.35)
nf

1/2
wh 02 1
1—cosp|1——EL Omax A0, O ~ | —2L — —
X { COS @ ( 7494;}0) } a 5 a < w% 72 5

where for a lower mode Af ~ 0,4«

and for an upper mode
Q
Omax A ~ —L/ni7
wr,

The characteristic feature of angular distribution near the critical con-
fluence point of the two frequencies is the following dependence of dN/dp
on the absorption length: 132 (compare [Zhevago (1978)]).

abs

4.4 Influence of Diffraction on the Process of Photon Emis-
sion in Crystals

Diffraction of produced photons in a crystal gives rise to a new phenomenon:
emission of y-quanta at large angles with respect to the direction of the
fast particle motion, and formation of a characteristic diffraction pattern.
Two fundamentally different mechanisms contribute to the latter [Bary-
shevsky and Dubovskaya (1976a); Baryshevskii and Dubovskaya (1977d)]:
one caused by the deceleration of electrons in a single crystal, being most
pronounced in the process of photon emission through radiative transi-
tions between the bands (levels) of transverse energy; the other, occurring
even for a particle moving at a constant velocity, is due to scattering of
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pseudo-photons associated with a particle by atoms and crystal nuclei (the
so-called parametric radiation [Baryshevskii (1971); Baryshevskii and Fer-
anchuk (1971, 1973, 1976); Garibyan and Yan Shi (1972); Avakyan et al.
(1975); Afanas’ev and Aginyan (1978); Feranchuk (1979b)]). The number
of photons in the diffraction peak appears to be quite large, which enables
obtaining information about the crystal structure directly from the analysis
of the frequency and angular photon spectra. At the particle energy ex-
ceeding several tens of megaelectron volts the spectral density of radiation
caused by a parametric mechanism in the frequency range up to several
hundreds of kiloelectron volts, proves to be one or two orders of magnitude
higher than density of radiation emerging at radiative transitions between
the levels of the particle transverse energy [Baryshevsky and Feranchuk
(1980b)].

As mentioned above, to determine the radiation intensity, one should
first find the photon wave function A;C;) under diffraction conditions. If the
photon wave length is comparable with a lattice spacing, A,(;) may be found
using the two-wave approximation of the dynamical theory of diffraction.
If it is much less than the lattice spacing, the theory developed for the case
of electron channeling is applicable (see Section (1.1, 1.2) [Baryshevsky
(19791,e)].

In the two-wave approximation of the dynamical theory of diffraction
(see, for example, [Pinsker (1974)]) the wave function Ag) may be repre-
sented in the general form as follows:

AL (7) = 88 (2)e™ + &1,81(2)eMT, (4.36)

where €5 and €1, are the polarization vectors of the direct and diffracted
waves satisfying the the transversality condition: (8,k) = (€1.k1) = 0; ky =
k+2r7; s =1,2 & || éu || [k, 2n7); ex || [K[E, 277]); 12 || [Fa[k, 2n7]); 27
is the reciprocal lattice vector characterizing the family of planes, where the
photon diffraction occurs. Note here that in the general case of diffraction
in polarized and magnetically ordered crystals equations (4.36) turns out
to be more complicated. Methods of constructing solutions describing such
a diffraction see in [Baryshevsky (1976); Belyakov (1975)].

The photon wave functions corresponding to various cases of the Laue
and Bragg diffraction only differ by the shape of the amplitudes ®(z) and
(I)l(Z)Z
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a. The Bragg case (k, > 0, k, + 277, < 0):

(=) = .0% 0% _ik# —ik-L
AL (7)) = Elris +asle’ 0(—=)
+ {é’seikrefikzl‘ [’yo*elvo 1s +’70*6170 25‘1
+Es By ek {e 5012 —ei%%sz”

x0(2)0(L — z) + {eseiEFe_ikzL + ésP1vg”

y {61%51@ n ei%egsL} 6iE1FefikzL} (= — L), (4.37)
where
e oo
Yo =cosf; 6 = s k1 =k + 207
2e - i1
0 2,1s — 4oo T 910
71’28 A: 5 Vs A: )
A = (223, — gao)e 7" — (261, — gio)e TR
1
€125 = {900 + Bign — fa £ \/(900 + Brg11 — aB1)? — 4B1(agoo — googi1 + 9?0931)} :
k. k. 2(122#77) + (277)?
br=r—0— =75 a= ;
k,+ 271, ki, w?

the quantities g, are determined by the expansion of the dielectric permit-
tivity of a crystal into a series in terms of reciprocal lattice vectors. The
crystal dielectric permittivity is a periodic function of the position of nuclei
and atoms;

b. the Bragg case (k, <0, k, + 277, > 0):

A7) = {@e™ @ pre™T

% {eﬂ'ﬁe;sL o efiﬁo‘s’{sL} } o(—2)

—l—{é’se”z’? [’y? e ot (F2:Ltel,2 )+73 e~ MO|(€15L+6252)}
—E BT {e_i‘%m(agsuafsz) - e‘iﬁm(ffsue;sz)]}
x0(2)0(L — z) + €, etk {7 e thal (e3sFe1) L

+73:€_¢ﬁ(si‘s+s§s)ﬂ e~*Lg(z — L) (4.38)
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c. the Laue case (k, > 0, k, + 277, > 0):
Aé;)(F) _ {é»seiEF [_f?:e—i%ei‘sL _ g*e_lm 3 L]
+é Sezklrﬁ |:€7—* 1L v E;SL}}G(_Z)
+{ 13;[ £0% e el (L—2) e i%e5, (L—2)

N s i e* ([— i
e e ) et (o]

x0(2)0(L — z) + €se etFFe—iks Loz - L), (4.39)
where
2¢e s
0 2,1s — 900 9o1
s— Tt s — Fo— ——
61’2 2(523 - 513) 61 2 2(528 - 513)

d. the Laue case (k, <0, k, + 277, < 0):
A7) = 8 ™0(=2) + {@e™T [~ehre T
_gg:e—ig’mefésﬂ + 513ﬂ16iE1F {st*e—i\%maﬂz
fs;:e*%%ﬂ bo)(L - 2)
e [elie T gt
+€15ﬁ16iEIF€i2nTzL [gI:e—iﬁe’l‘sL

+€I;fe*iﬁow€3ﬂ } 6(> — L). (4.40)

4.5 Spectral-Angular Distribution in the Bragg and Laue
Cases

Consider the influence of diffraction on spectral-angular distribution of pho-
tons emitted by a particle passing through a crystal. The particle enters
the crystal at a certain small angle with respect to the z-axis directed per-
pendicular to the crystal surface.

Let, for example, a photon be diffracted by a family of crystallographic
planes described by the reciprocal lattice vector 277, which is directed anti-
parallel to the z-axis, i.e., 277, = 277, = 0, 277, < 0. In this case under
diffraction conditions k, + 277, < 0; according the Wulff-Bragg condition,
the anomalies in the photon spectrum should be expected at the frequencies

w = T (a is the lattice spacing along the z-axis; n = 1,2...).
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In the case in question (the Bragg case a. ) the photon wave function has
the form (4.37). Its substitution into the general expression for the radiation
cross-section enables us to find the explicit form of the cross-section (see
[Baryshevsky et al. (1978)], formula (8)) (the photon is emitted at a small
angle with respect to the particle momentum.):

d?N, 2w
dLUdQ = Zan|gnfes|2

PORAATCEE)

pn=1,2

2

y (4.41)

where I} = (qfflf)’l is the coherent length; g » = pon — p1ay — ko — weps.
The cross-section will take on its maximum value for all the frequencies
satisfying the inequality

w m2
Re qznf =5 (.E2 + 92) - (‘C'Jnn - Elf/ﬁ)
—wRee,s < wimey,. (4.42)

Using (4.42), the spectrum can be written as

wus _ (Efnli - E}Kl) + |€|6H’S
L ) —Recy

(4.43)

where §,,s = w), 3 Ime,,; [e] < 1.

Consider the Bragg case b.. Now the emitted photons can fly into the
left half-plane from the crystal target. The diffraction pattern obtained
coincides with that produced by a polychromatic beam of photons incident
along the z-axis with the opening angle ¥ ~ m/FE.

The Laue case d. The analysis shows that the radiation intensity is
sharply suppressed, as none of the coherent lengths can become large.

The Laue case c. Spectral-angular distribution for the number of pho-
tons escaping (outcoming) at a large angle with respect to the direction
of particle motion has the form [Baryshevsky et al. (1980a); Baryshevsky
et al. (1980c)]

d*N, e Blw
d(.&)dQ Zan‘elsgnf‘

2
ns
zqznfL

Ejfwlie . (4.44)

u=1,2 qznf
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The quantity (4.44) attains the maximum value at the minimum ¢ Iz

As ¢J; ; is the complex value the minimum value is limited by the imaginary
part. The inequality

Re quJ«fo = Pzn — Plzf — (kz + 271—7—2)

w w
——Reeg,s < —Ime 4.45
Y1 Mo m - ( )

leads to the relation between w and the emission angle of the photons, and,
thus determining the photon spectrum. It should be emphasized that, due
to the effect of anomalous transmission, the imaginary part of g.,¢ in the
case of the Laue diffraction may become anomalously small, which results in
an appreciable increase in the radiation intensity of y-quanta as compared
to the case of the absence of diffraction.

Pay attention to the fact that upon introducing the notation k1, = k, +
277, inequality (4.45) takes the form analogous to that of the longitudinal
momentum at the emission of a photon with the wave vector El.

It is common knowledge that at photon emission by fast particles, the
photon emission angle is small. Hence, the angle that vector El makes with
the direction of particle motion is small too. From this follows that a large
emission angle is exhibited by a photon whose wave vector k is such that
together with vector 277 it sums up into vector El, which makes a small
angle with the direction of the particle momentum. As a result, the analysis
of kinematics is perfectly analogous to the case of emission at a small angle
4.

Expression (4.44) can be simplified considerably at Ree,s > Ime,, and
the crystal thickness small as compared to the absorption depth, or much
greater than absorption depth for a y-quantum. Using in the former case
the relation ‘%’2 ~ 27wL(q), we may integrate (4.44) with respect
to, for example, frequencies and obtain the photon angular distribution.
As diffraction is most pronounced within the range of photon wave lengths
A~ 1078 —107° cm, and the angle of k + 2n7 with P is small, then
(E + 277),a < 1, and in fnf and Ii,y we may expand the exponents
into a series [Baryshevskii and Dubovskaya (1977d); Baryshevsky et al.
(1978)]. Confining ourselves to the first nonzero terms, we can obtain,
for example for planar channeling, the following expression for the angular
distribution of y-quanta emitted at a large angle to the polarization plane
€11 perpendicular to the diffraction plane [Baryshevsky et al. (1980a);
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Baryshevsky et al. (19800)]:

dN Wn,
11 = Zan|INf| Z f 61|§ 1(wyy )l

-1
wl‘

X |1— 7( "f) Re (88#1)
IYIan Ow w= w“}

TyCOS(p—’TISlIl(p

7]

x {510-)::} sin? @ cos o

T.sinfsinyp — 7, COSG:|2’ (4.46)

|71 |

where wﬁ} = Qyp(1—Bcos —; 'Re ey (W f)) L. 9 is the angle of k + 277
with the z-axis.

The angular distribution of y-quanta emitted with the same polarization
at a small angle with respect to the particle momentum is described by
the same expression (4.46), where €7 — €% ~v; — 70, f1 = 1, 0 = 0 is
the photon emission angle. If the polarization of y-quanta is é5, i.e., it
lies in the diffraction plane, then their angular distribution is obtained by
additional replacement of 7, — 7., 7, — —7, in the augend of (4.46), and
tau, cos @ — T, in the addend.

Angular distribution of y-quanta emitted at a large angle with the po-
larization €2 lying in the diffraction plane differs from (4.46) by lengthy
terms of the order of unity and has the form

dN7. e Lﬁ €, 2
dQ 2 = : Zan| anZ Q Zf)|2

-1
w

" 1_( nf) Re (85/,1/2)
N8y Ow wewh?

. . 2
B1 sin 0 cos p[cos O(711 T) — Tz]w,‘ﬁc L [sin? @ cos @(7117) — 7] (4.47)
71 |71

E+2n7
|k+2m7]

The derived expressions for angular distribution of radiation simplify
considerably, if the particle energy is such, that 1 — 8 > ,Y—llReEMS. In

this case we may assume that the frequency corresponding to the radiation

where 7] =

maximum is very likely to be independent of dielectric properties of a crys-
tal, being determined only by the radiation angle and the frequency of the
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corresponding transition, i.e.,
s o an
Wy = Wy = 1—Bcos?’
As a result, for example, angular distributions under diffraction conditions
in the Laue case will be recast as follows
1. For radiation at a large angle with respect to the direction of the
particle motion

(4.48)

dNT
76% Z Q'rm'xnﬂz fR;—(ev ©)B; (wnf) (4.49)
(recall that s means photon polarlzatlon which may be of two types: o-
polarization €7, || [k, 277 and 7-polarization &~ | [k1[k, 277]]), where
R (0, 0) = Bsin? 0 cos ¢(T, cos p — T, sin )
(1= pBcos?)2\/7T2 — (11 7)?

2
(1> sinfsinp — 7, cosf)
(1 —Bcosh)\/1m2 — (117T)?

B sin 0 cos p[cos (71 T) — 7]

(1 —PBcosh)?\/12 — (11 7T)?

R7(0,0) = [

2

[sin 6 cos (711 T) — 7]
(1= Bcosh)2\/T2 — (11 7)?

. k+2n7 - -

ny = —=——_3 Bs (wnf) =S Z ‘g,us(wnf)|2; (450)

|k + 277 "

0 is the angle of vector k + 277 with the z-axis, ¢ is the polar angle in the

zy plane.
2. For radiation along the direction of particle motion
dN., Q 2L
0 Z Qunltns*2, s R0, 0) B (wny) (4.51)
where
RO, ) = Bsin? ¥ cos (T, cos p — T, sin )

(1= Bcos?)?y/12 — (AT)?

2
T, sind¥sin ¢ — 7, cos ¥

(1= Bcosd)\/12 — (AT)?

)
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sin? ¥ cos (74 cos p + Ty sin )

(1 = Beos)2\/12 — (1iT)?

R0, ) =

2
T, sind cosp — 7,

(1= Bcos?)\/12 — (AT)?

)

=

Bg(wnf) = Z |£2s(wnf)|2§ =
w

=

(9 is the angle of vector k with the z-axis; ¢ is the polar angle in the xy
plane).

Approximate integral expressions for the number of y-quanta emitted
at a large angle with respect to the direction of particle motion within the
diffraction peak may be found, using the fact that the frequency of the
photon produced and the position of the diffraction peak are determined,
on the one hand, by the Bragg condition, and, on the other hand, by the
laws of conservation in emission for a corresponding transition ,;. As
a result, we obtain the following expressions for the number of y-quanta
emitted within the diffraction peak at a large angle with respect to the
direction of particle motion:

a. for m-polarization

27 9241,/
me” LB gool Z 202

2 2 0 2

% TJ_wnf - |Tz|(:]nf

b. for o-polarization

2027 A4,/
_re BT L7900l Z 202

x{l—w}. (4.53)

|72 ‘Ti‘:)nf

To estimate the number of quanta emitted within the diffraction peak,
note that in the order of magnitude expression (4.49) can be represented
as the product of the spectrum of photon emission by a channeled particle
without regard to diffraction into the function |¢|? characterizing reflection
of photons by a crystal in the presence of diffraction. The value of the stated



The Influence of v-Quanta Refraction and Diffraction on .... 75

function is close to unity under the fulfillment of the Bragg conditions in
the range of angles 69 ~ €., close to the Bragg ones, i.e., in the range
59 ~ 107% rad, vanishing rapidly at great deviation from the diffraction
condition. Hence, the number of quanta emitted within the diffraction peak
is of the same order of magnitude as that emitted without diffraction in the
range of angles 69 ~ 1075 rad near the intensity maximum. As follows from
the estimations [Baryshevsky and Dubovskaya (1976a); Baryshevskii and
Dubovskaya (1977d); Baryshevsky et al. (1978, 1980a, 1979); Baryshevsky
et al. (1980c)] (see Section (3.3), depending on the energy and the type of
matter, 1078 E/m quanta (it is assumed that m/E > §) will be emitted in
the range 69 ~ 1076 rad over the crystal thickness L ~ 1072 cm. From this
follows that at the current of 107% A and the energy of, for example, 50 MeV
one should expect emission of about 107 quanta/sec, which appreciably
exceeds the intensity of conventional X-ray sources for the same angular
and spectral ranges.

The above formulae also hold true in the case when the crystal thick-
ness is much greater than the absorption depth of quanta, if in expres-
sions (4.46)-(4.51) the thickness L is understood as the quantum absorption
depth

L(w;z;) = Y1(0) [2w5;1msus(wz;)]fl,

where the subscripts 1(0) refer to radiation at a large (small) angle with
respect to the direction of particle motion, respectively.

Thus, radiation produced through radiative transitions between the lev-
els of transverse motion of a channeled particle, form behind a crystal a
diffraction pattern which can be decoded by means of the methods applied
in X-ray structural analysis.

4.6 Radiation Spectrum in the Quasi-classical Approxima-
tion

Due to a large relativistic mass, transverse motion of ultra-relativistic
channeled particles is quasi-classical for a vast majority of levels. This
makes it possible to apply particle wave functions in the quasi-classical
approximation to calculate the matrix elements x, ¢ appearing in (4.46)-
(4.51) [Feranchuk (1979a); Baryshevsky et al. (1980a); Baryshevsky et al.
(1980c,d,b)]. The sum over a appearing in (4.46)-(4.50) is split into two
sums relating to: 1. over-barrier states and 2. sub-barrier states [Bary-
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shevsky and Dubovskaya (1976a); Baryshevskii and Dubovskaya (1977d);
Baryshevsky et al. (1980a)].

The Bloch functions of sub-barrier states which are not located near
the the barrier top may be taken in the tight binding approximation with
quasiclassical functions in a well. For example, for planar channeling we
may write

Ui (z) = Cnpi(x) cos (/:L pn(2")dz' — Z) (4.54)

with the quantization condition fa " pu(al)da’ = w(n+3), where

pnlz) = {2E[¢, — V(2)]}"/%; V(2) = V(2 +a) is the one—dimensional peri-
odic in x potential of crystal planes; z,, is the turning point in the well for
n level; ¢2 = 4E(T™,)~; T, is the period of particle motion in the well:

bub = 2E/ .’L‘l.

The Bloch functions of the over-barrier states in this approximation may
be written as follows

1 ; @ ’ ’
Y (1) = Gy —eze’ Jo P (@) (4.55)
V/Pn(2)
with the quantization condition foa pn(2’)de’ = ka + 27n, where
én = BE(N,T )~ T is the period of the over-barrier motion:

over = E/ pn

Using the stated wave functions, one may obtain the following expressions
for the occupation coefficients:

Qun = 21(aTl 4|V (z0)|)™"  for sub-barrier states, (4.56)

Qun = 21(aT2 . |V'(20)])™  for over-barrier states. (4.57)

2
The point z is found from the condition &), = 2= + V(o).
As a result we have, for example, in the case when "n;f < 1:
for sub-barrier transitions

2 a—x, T
Tng xp;, () cos (qub / pgl(x’)de’) dz,
xT

Ts’rl]l,lb n
2 —
Qb — W(;ln f)7 (4.58)

sub
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for over-barrier transitions

E a T
Tnf = Tnb/o P, H(x)w exp {2 %\}er/o pnl(x’)de'}d:c,
2m(n — f)

Tn '

over

Q" = (4.59)
Using the expressions derived for z,f, it is possible to demonstrate
directly that formulas of the type (3.43) calculated in the quasiclassical
approximation for the transitions
n—f

n

<1,

coincide with similar expressions obtained by means of classical electrody-
namics calculations.

Consider in more detail the spectrum of forward radiation in (3.56) in
the case when refraction and absorption can be neglected. From (3.56)
follows that in the dipole approximation the spectral distribution of radi-
ation intensity in the absence of absorption and refraction may be written
as follows

= Le*w Z Qun|Tnsl? (4.60)
nf

dw,,
dw

foLf ll — anf(l — /32) + 2;;%}((1 _ 62)21 0 {192’@ — anf(w)] H[anf(w)].

If ¥y, = 7, then in view of (3.57) we have

dw,,
(;Z) = Le%uzf: an|xnf|2 (461)
2
xS {1 - Qinf(1 - 6%+ 23%;- (1- ,32)2} 02 — g (w))0lans ()]

Note that in the particular case @, = dnn, where 7 belongs to the states
lying inside the well, expression (4.62) converts into the expression discussed
in [Kumakhov (1977); Zhevago (1978)].

On the other hand, according to [[Landau and Lifshitz (1967)], formula
to problem 2 on p. 278] in the case when the particle deviation angle in
the field is small in comparison with the radiation angle, we have

dw w [ w2 w 5 w? .

— = t 1——(1- 1- dw', (4.62

w2 [ el S -2 we
$(-p2)
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where w,, is the Fourier transform of the particle acceleration, which, due
to the periodic character of motion in a transverse plane, is the set of
harmonics multiple of 27 /T, where T is the period of classical motion for
the given initial conditions. Substitution of w, for the periodic motion in
(4.62) gives formula (4.62) at Qny = Onyns. Averaging of (4.62) over various
initial conditions of motion, which in (4.61) corresponds to summation over
n with the weights @,,,, leads to the complete coincidence of these formulas.
The theory of radiation of channeled particles based on (4.62) is given in
[Akhiezer et al. (1979)].

Now consider another extreme case, when at particle motion in the field
produced by crystallographic axes (planes), the particle deviation angle

(which is of the order of the Lindhard angle ¥, = {/2¥) is much larger

E
than the characteristic angle of the photon emission ¥, ~ 7. Coherent
radiation length [ = % (1 — %) ~? is small as compared to the spatial period

of particle oscillation in a channel. In view of [Landau and Lifshitz (1967)],
radiation in the given direction occurs mainly from that part of the classical
trajectory of the particle, where the particle velocity is almost parallel to
this direction. Along this part, the field acting on the particle may be
considered constant, and the part of the trajectory contributing to radiation
may be considered a circle. This enables application of the theory of photon
emission in uniform circular motion for analyzing the problem. As a result,
in view of the problem 1 §77 in [Landau and Lifshitz (1967)], the spectral
distribution of radiation intensity has the form

+o0 [e'e]
dw, 2¢%w O'(u) 1
© - = [ o)du! 4.
7o \/E'yQ/ " —|—2/ (u")du'| dt, (4.63)

where ®(u) is the Airy function of argument

mw 2/3
o [eamw} |

E(F(t)) in our case is the magnitude of the electric field strength at the
particle location point.

Next consider planar channeling E(7(t)) = £(z(t)). Change the vari-
ables

ar=—2

v(z, o)

where

v(z,z0) = \/;(EJ_(ZUO) - V(z))
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is the velocity in the transverse plane of the particle entering the channel
at point xg;

192
EJ_(CEO) = E7 + V(.’EQ)

where ¢ is the particle angle of incidence with respect to the chosen family
of crystallographic planes; E = my is the energy of the particle entering
the crystal.

Take into account that the particle motion in a periodic potential is
periodic. The time of particle motion from the left turning point to the
right one (see Figure (1.2))

a—x1(zo)
7(xo) =

$1($U)

dxr
v(z, o)’

x1(xp) is determined from the equation F, (z¢) = V(21 (x0)).

If F, (x9) is greater than the maximum value of V, then z;(zg) = 0.
Hence, the entire integral over ¢t may be represented as a sum of L/7(zg)
identical integrals, i.e., (4.63) can be written as follows:

dw,, (9, xo) 2¢2w L
= _ 4.64
dw V7?2 T(20) (4.64)
a—z1(xo)
O'(w) 1 [ ., dx
— 0] _
/ { u + 2/u (u')du v(z, )
z1 (o)

Upon averaging (4.64) over the points of entrance and initial angular
distribution of the incident particle, we obtain
CZU—: = 2/f(19)d(19) -/0 dxow . (4.65)
Equation (4.63) is derived using the methods of classical electrodynam-
ics, so it is valid for describing the spectrum of soft photons with the energy
w < E (but one should bear in mind that the coherence length [ should be
less than the characteristic spatial period of the trajectory). To analyze the
spectrum in a short—wave range w ~ F, make use of the fact that, as shown
by Nikishov and Ritus [Nikishov (1979); Ritus (1970)], with due account of
the quantum recoil effects the spectral distribution of radiation produced
by a particle moving along a circular trajectory has the form:

2

A _ et 7@(5’)d£’+2(1+”)>¢>’(€) . (4.66)
3

dw ~  VTE1+7 3 21+
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where n = w/E — w; £ = (n/x)*?; x = eHy/m?, H is the strength of the
external magnetic field.

In a similar manner as has been done above, replacing the strength of
the external magnetic field by the strength of the electric field which acts
on a particle moving at a certain small angle with the crystallographic axis
(plane) and integrating (4.66) over the flight time, we obtain the following
expression for the spectral distribution of radiation energy:

+oo 00
dw e2m? 7 2 n?
— = — O(de + = 1—}—)(1)’ dt.
dw \/7?E1+77/ / () g( i)W
— 00 &
(4.67)
From this we obtain for planar channeling
dw(,z0)  €m? n L (4.68)

dw VTE1+17(x0)
a—z1(x0) o)

Averaged spectral distribution is given by (4.65).

4.7 Parametric Radiation

As mentioned above, the contribution to radiation intensity under diffrac-
tion conditions comes from radiation through transition between the levels
along with radiation which is due to scattering of pseudo-photons associ-
ated with a particle by crystal atoms and nuclei (parametric radiation).
This mechanism manifests itself in its purest form in particle motion in a
crystal beyond the channeling regime. Recall that parametric radiation is
the photon production in the transmission of a uniformly moving charged
particle through a periodically inhomogeneous medium.

Parametric optical radiation in a one-dimensional medium with di-
electric permittivity of one-dimensional periodicity was first studied by
Fainberg and Khizhnyak [Feinberg and Khizhnyak (1957)]. The phe-
nomenon of photon production when a particle passes through a medium
with space-periodic dielectric permittivity was reviewed by Ter-Mikaelyan
[Ter-Mikaelian (1969, 1972)]. In [Baryshevskii (1971)] attention was fo-
cused on the fact that the effect of anomalous transmission can drasti-
cally change the spectral properties of radiation produced by a particle in
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a thick crystal. Classical theory of parametric radiation in a thick crys-
tal, when the effects caused by anomalous transmission are of importance
was developed by Feranchuk and the author [Baryshevskii and Feranchuk
(1971, 1973, 1976)], Garibyan and Yan Shi [Garibyan and Yan Shi (1972);
Avakyan et al. (1975)]. Thorough analysis carried out in [Baryshevskii and
Feranchuk (1971, 1973, 1976); Feranchuk (1979b)] made it possible to not
only find general expressions for spectral-angular distributions of emitted
photons but also to obtain explicit expressions for the number of quanta
emitted by a particle within the diffraction peak as well as to analyze the
process of radiation in crystals containing Mossbauer nuclei. Formulae for
the number of quanta produced by a particle analogous to those in [Bary-
shevskii and Feranchuk (1971, 1973, 1976)] were later derived in [Afanas’ev
and Aginyan (1978)].

To obtain the formulae describing parametric radiation in its pure form
sufficient it to assume that the angle of a particle entrance into the crys-
tal is much larger than the Lindhard angle. In this case the particle wave
functions in a crystal are plane waves. As a result, we have the following
expression for the differential number of quanta emitted by a particle for-
ward into the narrow cone along the direction of its velocity ¢’ in the Laue
case (c.): From this we obtain for planar channeling

Z 25;” — goo (l(()o) . l(o))

2
ANO = & (&.5)?
° 2(e2s — €15) -

T2

pn=1,2
—iL/10) 2
x (e we —1)| Foddodpowdw, (4.69)

where ¥ and g are the polar and azimuthal angles of the photon.
Moreover, there appears radiation concentrated in the narrow cone with

the axis along the direction wj¥ + 277, wg = \(%T;)I 2 The differential

number of quanta emitted in the direction of diffraction is given by

2 71);},9(3)
ANG) — € (L5 G SO RTe
s 2 (61( U) Z 2(525 — 513) ( 0 ns )
pn=1,2
N 2
x (e” e/ bus — 1)’ Vrd¥rdprwdw, (4.70)
where cos?, = (k, whT + 277)/w?.  Coherent radiation lengths l,(f;) are

2Note that here and below, unlike [Baryshevskii and Feranchuk (1971, 1973, 1976);
Baryshevsky and Feranchuk (1980b)], for the sake of uniformity of symbols, we use the
notation 277 to denote the reciprocal lattice vector. In [Baryshevskii and Feranchuk
(1971, 1973, 1976); Feranchuk (1979b)] the reciprocal lattice vector is denoted by 7.
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determined as follows:

1 2 m? -t

(v) — — 2 .

lis = v T w ( 2 +7, 25!“) )
qzus

(v) 2 m2 2 -t
1) == (55 +02) (4.71)

From the analysis of (4.69) and (4.70) follows that the radiation cross-
section is maximum when the real part of the longitudinal momentum trans-
mitted to the medium vanishes. From the requirement Rqul[)S =0 we find
the dispersion equation defining the condition for emergence of parametric
radiation in a crystal [Baryshevsky and Feranchuk (1974)].

1
cost, = — — Re2eq g5. (4.72)
v

Equation (4.72) differs from the equation defining the condition for emer-
gence of Vavilov-Cherenkov radiation in a homogeneous medium by the
dielectric permittivity e(w), substituted for the corresponding expression
for a crystal 1 + 2eq 25.

In two limiting cases of thin (wL|goo| < 1) and thick (wLImggg > 1)
crystals, it is possible to obtain analytical expressions for the total number
of quanta produced by one particle, which are valid at In % > 1:

a. wpL|goo| < 1, with the results for the Laue and Bragg cases coin-
ciding;:

N 2 TPl — (2nr )

E
S 2 -
s 8277, |3 L|gio(wp)|"In o (4.73)

where 277, > wp; g—i > |gool;
b. wpLImggy > 1. In the Laue case .

v 2ler7)? = @n7)?) loto(wh)?
: @A) lhnlwp)

m2 2
1“{(E2+5s—960) +|gfo|2—6§} ,
where goo = gho + igly; s = \/%TMIM\/M

U
9bo 1s the imaginary part of ggo. And the angular divergence of quanta

x (4.74)

i gho 1s the real part of ggo;

A9 = \/’g—; + gjy, the order of magnitude of the frequency spread near
w = wp is defined by the formula
Aw - m?

o7 2 + 9ho- (4.75)
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In the Bragg case when the below condition is satisfied

m2
2 2970 — 21/1B1Re(g50951) > 900- (4.76)

the intensity is defined by formula (4.74). If the condition (4.76) is violated,

N 22T = 2
s 8(2m,)?

2
) 9t (0s) In %5 + gho
[v/1BiIRe (ki) (o + /1B gtogtn )72

Numerical analysis showed that the values of N7 found from formulae
(4.74)-(4.75) coincide with the results of calculations by the exact formulae
with the accuracy of 5 — 10%

Now go over to considering the frequency spectrum of parametric radi-
ation concentrated along the direction of particle motion. Assume a crystal
to be quite thick (wLImggy > 1). Expression (4.69) can be represented in
the form

(4.77)

AN = dN" + dN,,

where
n 462 2 |900‘2 3 dw
AN} = ?ps CEE R P goo|219 dﬂdcp; (4.78)
- 4e?
dN, = ?PS

" (2225 — go0)(2€15 — goo)

(=2 + 92)2[7=2 + 02 — gool2|7—2 + U2 — 261, 2|72 + 92 — 22,
xRe [4e25615 (77> + 9% — goo)
+2900(7 % + 9%) (€25 — £15) — goo(v 2 + 9?)

d
X (2772 + 202 + goo)] ﬁBdﬁdgoUw, (4.79)

and p; = sing; po = cosg;y = E/m. Formula (4.78) coincides with the
expression for the cross-section of transient radiation in a homogeneous
medium with dielectric permittivity e(w) = 1 + 2ggo. The addend is asso-
ciated with parametric radiation, it contains information about the crystal
structure.

Analysis of expression (4.79) shows that dN, has a pronounced reso-
nance character: when the conditions (4.72) hold, its value exceeds dN" by
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a factor of (g/gy)? (i.e., by a factor of 10* + 10%). The width of the peak
formed by parametric radiation is very small (see (4.75)), so the contribu-
tion to the integral intensity of forward radiation due to parametric effect
is insignificant as compared to the intensity of transient radiation.

As seen from a through analysis carried out by Feranchuk [Feranchuk
(1979b)], the study of the energy spectrum of the forward-emitted photons
enables one to simultaneously measure a larger number of structure ampli-
tudes, which may appreciably reduce the duration of physical experiments
in X-ray diffraction analysis. Below we follow the same line of reasoning as
in [Feranchuk (1979b)].

The most direct method to measure dNj is to use X-ray detectors with
high angular and frequency resolution. But good reliability of the para-
metric effect study against transient radiation is possible when the relative
angular and energy resolution of a detector is not poorer than 1072%.
Though the investigation of radiation spectrum with such a resolution is
feasible, using another single crystal with known parameters as a detec-
tor, such an experiment seems to be tedious, and above all, it leads to a
considerable loss of radiation intensity.

Another opportunity is to use detectors, which enable detecting X-ray
radiation with given (preset) polarization. In this case suffice it to regis-
ter photons polarized perpendicular to the radiation plane, i.e., the plane
formed by vectors k and @. The radiation registered by such a detector
will be completely associated with the parametric effect. Nevertheless, this
method also exhibits the shortcomings mentioned above.

Therefore we only give a more detailed analysis of one experimental
method which seems to provide the simplest way of measuring dN, mak-
ing the most out of the advantages of the parametric Vavilov-Cherenkov
effect: high intensity and the possibility of simultaneous study of numerous
structure amplitudes.

Thus, suppose that a detector registers the total radiation propagating
in the cone with the apex angle AY = /y72 + g, along the direction of
particle motion and has a relative energy resolution Aw/w = w ~ 3 — 5%,
typical of semiconductor detectors. Assume also that the electron beam
does not get into the detector after leaving the crystal. For this purpose
one may use a holed detector, or change the beam direction after the crystal
by means of a magnetic field.

The number of photons with the frequency wq registered by the detector
per unit time, which are formed in the transmission of a beam of monochro-
matic electrons with the energy E and current J through a thick perfect
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single crystal, is defined by the expression derived from (4.78), (4.79) by
integration with respect to the exit angles and frequency and summation
over polarizations of quanta:
4e? [2v~2 — ¢} wo
nO(WO) :J|: Y - gOO( )
™ 1900 (wo)]
77— goo(wo) ] Aw
72 w

if wp < wh — Aw or wy > wj + Aw, and

x In , (4.80)

: |

2|71 — 72
n(wo) = n(wo) + nr(wo) = no(wo) + Je s

2 A
iy (22), sy
900(wo) Wp
if wh — Aw < wp < wh + Aw. Here
(2777')2 -2 /N2 2 2
T=-——->_— B=1 0 — e
B = Y]’ n[(y"" 49— goo)* + g J
97 (w
§= g;— //( O) )
00(wo)

f(x):{ ! T > /72 oo
T/ g0 T < /72 + oo

Auw is the energy resolution of the detector, we shall assume to be ap-
preciably less than the distance between the nearest resonance frequencies,
ie.,

Aw < minfwy — W3] =~ TTmin.
T1T2

Complete information about the crystal structure is contained in the
quantities n,, which, according to (4.81) are determined by structure am-
plitudes. The relative value of n, as compared to the background counting
rate ng associated with the transient radiation depends on Aw:

ny |t =72 g, |> wf |

(= no 72| % Aw’
Aw
o > V772 + goo- (4.82)
B

From (4.82) follows that at a relative resolution of the detector Aw/w ~ 0.03
the quantity £ for real crystals varies within the limits from 0.01 to 0.1.
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The method enabling one to select a weak signal with the intensity ng
against the noise of intensity n,, > n, ia applicable to measure n,. This
method is widely used in the problems dealing with the measurement of
weak luminous fluxes [Komarov and Pisarevsky (1965)]. It is based on
splitting of the total measurement time ¢ into two equal parts ¢; and to,
with all the photons associated with both mainstream and noise flows being
registered during time ¢;. During the time period ¢, only noise pulses are
taken into account. Then the difference of the number of photons Ny,
gathered in time ¢; and the number of photons registered by the detector
in time t5 determines the signal intensity:

nS=2(N2—N1)/t:I:AnS, (483)

the relative accuracy An/ns is obviously dependent on the measurement
time ¢. The time necessary to attain the the given accuracy S can be easily
found
tg = 2(2np +ny) /n2B2%. (4.84)
In the problem in question this method may be used as follows. Suppose
that a multichannel analyzer with the channel width Aw corresponding to
the energy resolution of the detector is used to study the pulses from the x-
ray detector. Let during time ¢/2 the pulses be summed up in each analyzer
channel, which appear at the detector output when an X-ray quantum with
the energy corresponding to the given channel gets into the detector. Then
the crystal should be turned through the angle 1 satisfying the condition

2 Tinin SIN Y > Aw (4.85)

about the direction of the velocity of the electrons, with 7,;, being the
smallest of the vectors 7.

If the condition (4.85) is fulfilled, the photon frequency w;, which was
close to the resonance one for a certain reciprocal lattice vector 7(w; ~ w7),
after the crystal rotation will appreciably differ from it, so that the intensity
of quanta with the frequency w; will only be determined by the quantity ng.
If now in each channel of the analyzer we subtract the number of quanta
registered by the detector during time /2 after the crystal rotation, then
in the analyzer channels corresponding to the resonance frequencies in the
first time period, the number of pulses N, will be defined by formula

N, =n,T/2 + AN, (4.86)

while in the rest of the channels the number of pulses is equal in magnitude
to AN - the number of pulses due to statistic fluctuations of photons, and

AN =~ +/(nz+ ng)t/2. (4.87)
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Using (4.86), we may find n, along with the structure amplitude F(7) with
the absolute error determined by the quantity 2AN/t. The time necessary
to measure F(7) with the specified relative accuracy 3 is found, using (4.84),
if assume that ny = n,, ny, = ng:
o 1 906 Aw
T BJm Bl g [ wp
To estimate ¢g choose the electron current J = 107% A, E = 50 MeV,
Aw/wh = 0.03, |g-| = 1075, gff, = 107® are the typical values for real
crystals. Then, to measure F'(7) with the relative accuracy 0.01, we need
the time t5 ~ 1072 s.
Mention also a simpler way of selecting transient radiation suitable for

(4.88)

investigating crystals containing atoms with the small number of electrons,
when the frequencies wp of photon emitted in parametric effect are greater
than characteristic atomic frequencies. In this case ng has a universal de-
pendence on the frequency w. That is why it is not necessary to rotate a
crystal to determine n.: suffice it to subtract Ny = Nowg/w,%, where N
is the number of pulses in the channel corresponding to the frequency wy
(wo satisfies wyg < TTmin) from the total number of photons registered in
the channel of the analyzer corresponding to the frequency wy. It may be
demonstrated that in this case the time of accumulation is also determined
by (4.88).
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Chapter 5

Classical Theory of Radiation
Formation by Particles in a Medium

5.1 Particle Radiation in a Medium in the Presence of Scat-
tering and Energy Losses

Classical theory of production of electromagnetic radiation by particles
passing through a single crystal without regard to refraction, absorption and
diffraction was developed by M.A. Kumakhov [Kumakhov (1976, 1977)],
M.I. Podgoretsky [Podgoretsky (1977a,b)], A.I. Akhiezer, V.F. Boldyshev
and N.F. Shulga [Akhiezer et al. (1979)], D.A. Alferov, Yu. A. Bashmakov,
E. G. Bessonov [Bessonov (1978); Alferov et al. (1977a,b)], V.N. Baier,
V.M. Katkov, V.M. Strakhovenko [Baier et al. (1979)].

Presented below is the classical theory of photon formation by particles
in a medium with due account of the effects caused by refraction, absorp-
tion and diffraction, which also enables one directly to allow for possible
multiple scattering of particles [Baryshevsky (1976); Baryshevskii (1974);
Baryshevskii et al. (1977, 1976); Baryshevsky and Grubich (1979¢)].

So, let a charge move in a medium (e.g., in a crystal) in an arbitrary
manner. The spectral density of radiation energy per unit solid angle
Wi (it = k/k; the differential number of quanta dNgz, = Wiw/hw) as
well as the polarization characteristics of radiation may be easily obtained
if the field (7, w) produced by a charge at large distances from the crystal
is known. For instance,

, (5.1)

where c is the speed of light; the vinculum means averaging over all possible
states of the system under consideration. To find the field E(7, w), one
should solve Maxwell’s equations which for an arbitrary medium have the

89
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form
2 . .
S w? =, dmiw dmiw .,
—rotrot E(7, w) + C—QE(T, w) o+ c—aijEj = 77]02-(7’, w), (5.2)
3

where 055 is the conductivity tensor of matter; Joi (7, w) is the Fourier trans-
form of the i-th component of the current induced by a moving charge. In
the quantum mechanical case by ” jo; (7, w)” one should understand the un-
averaged over the crystal states current of transition from one quantum
mechanical state to another.

The transverse solution of (5.2) can be found, using the Green function
G of this equation satisfying the relation of the form

G=G+ GOZC%)&G, (5.3)

where Gy is the transverse Green function of equation (5.2) at 6 = 0 (its
explicit form see, for example, in [Morse and Feshbach (1953)]). Using G,
it is easy to find the field we are concerned with:

-, o w

E(T,w):/Gil(r,r w) 2jgl( NP7 . (5.4)
According to [Baryshevsky (1976)] at r — oo the Green function is ex-
pressed via the solution of homogeneous Maxwell’s equations EZ-(_)(F,w)
containing a converging spherical wave at infinity:

. (= = _ ss(=)" (=1
lim Gll(r7r aw) - ZeiEEl (T aw)a (55)

r—00 r

S

Lo w? oy,
—rotrot E )(r7 w)+ch( )(Ta w)L 2 Jiit

where € is the transverse unit vector of polarization; s = 1, 2.
If the wave is incident onto the object of finite dimensions, then, at

r— 00,
—ikr
Ii )(r w) = &%e* 1 const (5.7)
Using (5.4) and (5.5), we find
e ) 5
E;(F,w) = /E w) (7 w)d’r (5.8)

In view of (5.1) and (5.8), the spectral density of radiation is
2

Vo= W = 55 L || B om0
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where W5, is the spectral density of radiation per unit solid angle for
photons, characterized by the polarization vector €¢. To explicitly find
Wiw, it is necessary to know the field E;(_) and the current 7. With

(+)

known solution E; of the homogenous Maxwell equations describing the

process of photon scattering by the target, field Eg(_) can be found using
the below relation:

s(=)" _ s+
PR O (5.10)

Introduce the following explicit expression for the Fourier transform of the
current into (5.9):

ﬂFv w) = /ethﬂF7 t)dt7
J7 1) = eB(t)5(7F — 7(t)) . (5.11)
Substitution of (5.11) into (5.9) gives

Wi = 47r263/ /E}i (7(t))(t))e™"
(B (F()(t))e™ ™" dtdt, (5.12)

where t1 and t5 are the starting and finishing moments of the charge motion,
respectively.

In (5.2) perform averaging over the possible particle trajectories in a
medium. Such averaging is usually performed with the combined probabil-
ity density w(7, 0, ¢;7,9’,t") of finding the coordinate 7 and the velocity ¢
of a particle at moment ¢, the coordinate ¥/ and the velocity ¥/ at moment
t'. However, when investigating the effects of the energy losses, it is more
convenient to perform averaging with a similar function, which depends on
variables 7 and p, where 'is the particle momentum. As a result (¢ = 1),

W= | / [ (5 0a) (570 555)

xw (7, p,t, 7,5 e Brddy dPpdip'didt’ . (5.13)

Choose the coordinate system so that the xy plane coincides with the
matter—vacuum boundary. Direct the z-axis from the medium to vacuum.
Suppose that a particle with momentum py directed along the z-axis starts
moving at time (—7T") at point (0, 0, —zp) inside the medium. Let it cross
the matter-vacuum boundary at moment ¢ = 0.
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In the case of high energies of y-quanta we are concerned with, we may
neglect mirror reflected waves in the expressions for the fields E](;_)S. As a
result,

(5.14)

7S _ { E5eih at 2 >0,
L=

= STk
g% Tatz <0,

where £ is the photon wave vector in the medium with the components
K| =wity, k. = wy/Ef..

Using (5.14) and going from variables (p, 6, ¢) to variables (E, ),
where F is the energy and 0 =0,7+ 0,7 is the transverse angular vector,
one can obtain the following expression for the intensity distribution W)z,
of photons polarized in the plane of exit from matter:

X exp|—iwT + ik (7' — )] exp(wzIme)

wwi (7,0, B, t + T)ws(F, 0, E, 0|F’,9_",E’,T’)} : (5.15)

where ¢ is the set of coordinates (7, 67, E); wy (7, 0_', E, t) is the probability of
finding the particle coordinates (7, g, E) at time t; wo (7, g, E, |7, g, E, ')
is the conditional probability of finding the particle coordinates (7, g ,E")
at time ¢’ if at moment ¢ the particle coordinates were (7,6, E); F(f) =
1 — (6z cosV, + 0, cos 19y)19*2; Vg, Uy, ¥, =10 are the direction angles of
vector k().

The expression for spectral-angular distribution of the intensity of pho-
tons whose polarization vector is perpendicular to the exit plane is derived
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from (5.15) by substitution of ¥=2 for ¥? and B(6) = 6, cos ¥, — 0, cos
for F(6).

Pay attention to the fact that some integrals in (5.15) contain the prob-
ability densities wo which depend on the instants of time corresponding to
particle motion both in the medium and outside it. However, it is more
convenient to deal with the densities which depend on the instants of time
referring to particle motion in the medium or outside it alone. With this
aim in view, make use of the following general property of the distribution
functions:

wa(&, 11, 1') = / wa€,H€" " Ywn (€7 7)€ H)dg" . (5.16)

Substituting (5.16) into (5.15) and choosing the instant of time corre-
sponding to the moment of particle exit from matter, i.e., t = 0, we obtain
the expression for Wz, which only depends on the distribution functions
describing the particle motion in the medium or outside it.

The probabilities w1 and wsy satisfy the kinetic equation which, for ex-
ample, in a chaotic medium has the form

ow pow ow
I i Y . 5.17
ot T Eor (m)ml (5:17)
(The case of a crystal is discussed in Chapter (9.5).
In our case the change of the collisional term (%2)  in time is due to

scattering and radiation processes, and it may be described by the equations
of the form:

aw(n) n ’I’LI
( ot ) == g™+ gupw™), (5.18)
col n’ n'

where g, is the probability of the system transition from state n (in our
case of the electron in state n) to state n’ per unit time. The probabilities
gnns may be found by conventional rules [Berestetsky et al. (1968)].

As a result, for example, in a chaotic medium, taking account of the
change in w(™, which is only due to multiple scattering and bremsstrahlung,
gives

) - _NJtotw(ﬁvt)
col

d3p/ |M—'/-'|2 .
+N/(27T)25(E,,Ep,) 4”Eg w(p,t)
p
&3y Bk |M i 5
+N/7§(E — By — k)L w(p,t), (5.19)
(2m)s PP SE,E, k
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where N is the number of scatterers (nuclei) per unit volume; the ampli-
tude My ;5 describes electron scattering in the nuclear Coulomb field, the
amplitude Mﬁ, i describes the emission of y-quanta by the electron in the
nuclear field; oo is the total cross section of all the processes.

Give a more detailed treatment of the case when the emission of ~-
quanta may be described by the Bethe-Heitler expression at complete
screening of the nuclear field [Berestetsky et al. (1968); Heitler (1984)].1

Turning from the probability describing the electron distribution in the
momenta to the probabilities describing particle distribution in energies
and scattering angles and taking the appropriate transformations of (5.19),
we obtain the following equation

(W%fm ) = q(E)Agw(0, B, 1)
col

+K(E)w(d, E, 1), (5.20)
where Ay = % + %; q(E) = SE72% 6§ = %ESQ; K(E) is the integral

operator of the form 2

. o0 E? - 2uE .
K(E)w(o,E,t):/ W TSR ) du
E

w?(u—FE)
Eu2+E2—§uE o
— | — 3 (6, E, t)du. 21
/0 a0 Bt (5.21)

The initial conditions for the distribution functions w; and wsy have the
form

wy(t = =T) = 6(7 = 70)6(0)0(E — Ep),
wy(t =t") = 6(F — 7)6(0 — §)S(E — E'),
where Ej is the initial energy of the particle;

5 02 + 02
%:U,U has the components 0, 0,, 1 — 12 J

Using kinetic equation (5.20), it is possible to find the time-dependence

of the mean—square angle (§%(E, t)) of multiple scattering of the electron of

1The influence of multiple scattering (the Landau-Pomeranchuk effect)and the effect of
the medium polarization on the bremsstrahlung cross-section may be taken into account,
using the method described by Ter-Mikaelian in [Ter-Mikaelian (1969, 1972)].

2]t is interesting to note that the equation obtained can be derived from well known
equations of the shower theory [Belenky (1948)] with the terms referring to the pair
formation being dropped.
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energy E within the interval dE. For this purpose, we shall multiply (5.20)
by 62 = 62 4 62 and integrate it over 7 and §. As a result, we have
9{0*(E,t))
ot
where w(E,t) = [w(F, g, E,t)d3rd?0 is the probability of finding an elec-
tron with the energy E at time ¢ if at ¢ = 0 its energy is Ej.
Solving (5.22) using the Mellin transform, find

= 4q(E)w(E,t) + K(E)(0*(E,t)), (5.22)

(0%(E,t)) =46 [ dt’

w(Bo|E', tYw(E'|E,t —1t). (5.23)

For particular calculatlon of (5.23), make use of the approximate expression,
derived by Bethe and Heitler [Heitler (1984)]:

-1
1 (ln 0 ) >
Ey, Bt , 5.24
wlEo, B ) = o (5:24)
where ¢ is measured in radiation units; I’ (%) is the gamma function.

Substitution of (5.24) into (5.23) gives
1

(02(5. 1)) — 4q(E]zJ£1Fn( ))"2 /q> (172 .20 ) dr,  (5.25)
In2 0

where @ is the degenerate hypergeometric function. Expression (5.25) dif-
fers considerably from a simple exponential dependence, obtained through
substitution of the equality (E) = Ege~"/E into (92(E, t)) = 4qt.

Like in the case without losses, further analysis is convenient to perform,
studying the equations for the functions of the type given below, which
appear in (5.15)

uo(0,E,t+T) = /d?’rwl(F, 0, E, t +T)e?™me (5.26)

-

w@acEEGﬂ:/E%mmééﬁaE%%ﬂwﬂWm- (5.27)

In view of (5.26) and (5.27), multiplication of (5.20) by the correspond-
ing multipliers gives gives the following equation for u in a chaotic medium
Ju

5 T A0, B)u=q(E)Agu+ K(E)u, (5.28)

where in the case of ug

A0, E)u = Ag(0) = —wp <1 - ;02> Ime, (5.29)
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in the case of us

A(6,E) = As(6) (5.30)
=iw |1 — B(0, cosV, + 0, cosd,) — B <1 - ;92> (1 — %92 + ;&*)] )

where § =v/c¢; c= 1.

Thus, to find the radiation spectrum one should solve equation (5.28).
Similar equations can be analyzed, using the methods developed in the
cascade theory [Belenky (1948)], though the formal solution obtain thus
obtained is sophisticated in form.

Let us give a more detailed treatment of the case of radiation in an amor-
phous medium when the energy losses can be neglected (the plate thickness
is much smaller than the radiation length). The problem of photon radi-
ation in the X-ray and optical regions by particles passing through the
matter-vacuum boundary was discussed in many publications. However,
angular, spectral and polarization properties of the radiation produced in
the presence of multiple scattering were analyzed regardless photon ab-
sorption in the medium, and for this reason they are not suitable for the
study of, e.g., generation of resonance photons (optical, X-ray, or Mossbauer
ones). Below the results obtained in [Baryshevskii et al. (1977, 1976)] are
presented.

5.2 Spectral-Angular Distribution in the Absence of the
Energy Loss

First, consider the problem of the relation between bremsstrahlung, tran-
sition and Cherenkov radiations in the range of high energy y-quanta.

It is worth mentioning that the analysis of the role of transition radia-
tion in the X-ray spectral range used the expression of the form below for
dielectric permittivity of the the medium:

2
e=1-"L, (5.31)

where w? = 4me?zN/m; wy, is the Langmuir frequency; w is the frequency
of the emitted quantum.

Equation (5.31) is only valid for the energy ranges where the Compton
scattering is the major mechanisms of scattering of y-quanta. In the range
of high energies of y-quanta we are concerned with, the significant contribu-
tion to € also comes from the pair production processes, and Re(e—1) < Ime.
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1. To clarify the relationship between the transition radiation and
bremsstrahlung in the high energy regions, it is necessary to find the inten-
sity Wi of radiation emerging in a vacuum in the direction of motion of a
particle passing through a layer of matter. Assume for simplicity that the
layer thickness is much larger than the absorption length of y-quanta. In
this case in a similar manner as when solving the problem of optical radi-
ation of a particle entering the matter [Pafomov (1969)], one may obtain
the expression for W5, coinciding with the that derived by Pafomov [see
[Pafomov (1969)], formulae (27.44)-(27.49)], upon substituting in the latter
B — —Band € — £* in all the functions except n = [4wBqImy/e — sin? ¥]'/2.
Taking account of the fact that at high energies the angular distribution of
radiation is concentrated within a very narrow angle relative to the direc-
tion of particle motion, and the dielectric permittivity of matter is close to
unity, allows us to simplify formulas (27.44)-(27.49) in [Pafomov (1969)].
They take the simplest form if the following condition ifs fulfilled

%) < %(Im&)Q), (5.32)

where (0?) is the mean-square angle of multiple scattering per unit length.
The condition (5.32) may be recast as follows:

(0*)L. < v2, (5.33)

where L. = — is the absorption depth of y-quanta; 9?2 = =7~ is the

squared effective angle of quantum emission.
According to (5.33) the formulas in question simplify, if the mean-square
angle of multiple scattering of an electron over the absorption length of -

quantum is smaller than the squared effective angle of radiation. Then the
expression for angular and spectral distributions of the radiation intensity
W, takes the form

292 |6e?1— B2 — B — Lée + 9?2

Wﬁw =
dm2e (1 — B2+ 02)2|1 — B — 46 + 202
e?(0?) 9> . 1-pB— 46
m
2w (1-2+92)7 (1—B— L6+ J92)

N e2(6?%)
4m2wIne|l — B — Lo + 392
where 9 is the radiation angle; ¢ = ¢ —1. The first term in (5.34) describes
transition radiation, the second and third ones are non-zero only allowing

, (5.34)

for the particle scattering in a medium and describe the interference of the
transition radiation and bremsstrahlung, and bremsstrahlung itself.
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Using the condition (5.32), one may notice that the second and third
terms are smaller than the first term, i.e., the intensity of transition radia-
tion is greater than that of bremsstrahlung. To make sure, use the following
common expression for (6?); [Ter-Mikaelian (1969)]

(0%)1 = 4E2/L.E?, (5.35)

where L, is the radiation length; E; = 21 MeV; E is the electron energy.
As in the energy range under consideration L. ~ L,, the condition (5.32)

E > Eq\ /%Lr. (5.36)

Fulfilment of (5.36) entails satisfying the condition

(moc?)? < E? <
252 2 S oL

may be recast as

1—p~

= Ime. (5.37)

Integration of (5.34) with respect to the angles using (5.37), gives the fol-
lowing expression for the first term describing the intensity of transition
radiation:

2¢?

E\/|§
Wtr =~ In | 2€|
e mocC

(5.38)

for the second and third terms, we obtain the estimate coinciding with that
for the bremsstrahlung [Pafomov (1969)]:

e2(6%) 1

Wbr ~

or, taking into account (5.32),

62
Wi < — . (5.39)
mwe

Thus, in the energy range, where the condition (5.32) holds, the intensity
of bremsstrahlung is much less than that of transition radiation of y-quanta.
If a less stringent condition (62) ~ w/c(Ime)? is fulfilled, the intensities Wi,
and Wy, (and their interference) become comparable in magnitude, so the
separate consideration of transition radiation and bremsstrahlung is also
impossible for high—energy y-quanta. In view of (5.36) such a situation

E~EL /2L,
C

arises at the electron energy
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i.e., at £ ~ 10 eV for y-quanta in the range of several gigaelectronvolts,
and substances for which L ~ 1cm (for example, for copper L = 1.29 cm,
for lead L = 0.46 cm).

Interestingly enough, in the ranges of high—energy ~-quanta the con-
tribution of the pair production processes to the real part of dielectric
permittivity is positive, in contrast to the negative contribution from the
Compton scattering (see (5.31). According to [Toptygin (1964)], allowing
for pair production

Ree =1+

47w Nc? ze? 7 3

where a is the shielding radius; « is the fine structure constant, z is the
atomic number of the nucleus.

From (5.40) follows that under standard conditions the contribution of
pair production processes to Ree is by the order of magnitude less than that
of the Compton scattering even for heavy substances [Toptygin (1964)]. As
a consequence, Ree < 1, and the Vavilov—Cherenkov effect is impossible.
Nevertheless, according to (5.40), to increase the contribution of pair pro-
duction processes to Re ¢ is possible by increasing the shielding radius which
is attainable in plasma. Thus, in hydrogen plasma the contribution of pairs
to Ree becomes greater than the Compton contribution for the shielding
radii @ > 2-107%cm. As a result, Ree > 1, and Cherenkov radiation is pos-
sible even in the high energy range in the isotropic homogeneous medium.

3. Formula (5.34) also enables analyzing transition and Cherenkov ra-
diations of resonance ~y-quanta and the effect that multiple scattering of
electrons in matter produce on the stated processes.

Let us first dwell upon the role of bremsstrahlung. To avoid the influence
of multiple scattering on transition radiation, the condition (5.32) should
to be fulfilled. Using (5.35) recast (5.32) as follows

w L2(w)
E> 2B, 22 41
> 2Bs\[ = (5.41)
where
c
Le(w) = ———
(@) wIne(w)

is the absorption depth of a quantum of frequency w. From (5.41) fol-
lows that, for example, for 119Sn (hw = 24keV, L.(w) in the resonance is
2.8-107* cm) multiple scattering may be neglected at the electron energies
E > 400MeV. Assuming that the condition (5.41) is fulfilled, upon inte-
grating (5.34) with respect to the angles, we obtain the following expression
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for spectral intensity of transition (and, if possible, Cherenkov) radiation
[Baryshevskii and Ngo Dan Nyan (1974)]:

s 4(1—B)Rede], [2(1 —B) —Rede]? + (Imde)?
O = I 0P
e? [Rede  2(1—B) (Imde)? — (Rede)?
e {Imés Imde |6e? }

2(1—B) —Re 55] e (5.42)

T
X | = — arctan .
{2 Imde e

Using the values of §e given in [Perelshtein and Podgoretsky (1970)], one
may obtain the below estimation of the number of y-quanta in the center of
the Mossbauer line in the energy region Aw of the order of the level width
I', which are emitted by an electron with the energy of the order of 1 GeV:

We
M=

>

~ 10712, (5.43)

The estimate (5.43) was obtained in [Samsonov (1978)] by numerical
solution. This estimate is also valid for the case when the difference 2(1 —
B) — Rede may vanish, i.e., in the presence of the Cherenkov radiation
mechanism. Note that for the electron energy, at which 1 — 8 < |d¢|,
the radiation intensity W,, is determined by formula (5.38), demonstrating
weak dependence on the type (form) of ¢, unlike the case of a thin target.
Thus, to detect in the emission spectrum the anomalies associated with the
resonance level, it is necessary that the electron energy should not be very
high (for d¢ ~ 107> the term in (5.42) similar to that in (5.38) exceeds
tenfold the terms depending on d¢ if the electron energy E ~ 100 GeV).

Now turn to quantitative analysis of the radiation spectra in the absence
of the energy losses.

Thus, assume that in (5.28) K(F) = 0, i.e., neglect the bremsstrahlung
loss. Following the similar lines as given by Pafomov [Pafomov (1969)],
one may find explicit solutions of equations (5.28) for u. Substitution of
thus derived expressions for u into (5.15) and integration with respect to the
angles of electron scattering, give the following expressions for the radiation
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intensity Wi,

62w2 o0 o) ,T , 1
= S ; _ 1— - .92
Wi 92c {/0 dt/0 dt 2 exp {zw(t (1 -8+ 219 )

where

192 4T t—¢t 2 T [eS) T _
+770()] +2Re/ dt/ it ———
4poq 0 0 H?2 cosh® nt

1 1 1
X exp {iwt’(l - B+ 5192) —iwt(l— B+ 5192 ~ 509)

092 tanh it
- tf
(1= 92 + 02) (” I >+S]
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Formula (5.44) describes the emission of photons polarized perpendicu-
lar to the their exit plane. The origin of this radiation is closely connected
with scattering in a media (at ¢ — 0 the radiation disappears), so it may
be related to bremsstrahlung.

Formula (5.45), referring to the emission of photons polarized in the exit
plane, contains contributions associated not only with bremsstrahlung but
also with the transitional mechanism of radiation as well as with their mu-
tual interference. The first term in (5.45) describes radiation in a vacuum
through particle emission from matter into vacuum, the second term - the
interference of radiation at emission, and radiation produced on the part
of the particle trajectory in matter. The third term contains contributions
to radiation, which are caused by scattering in matter as well as uniform
motion to the point of exit from matter.
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If we are concerned with the radiation spectrum of a particle passing
through the plate of thickness L = vT rather than that of a particle passing
through the matter-vacuum boundary, then as seen from the appropriate
calculations, the formulae for angular and spectral distributions of photons
polarized perpendicular to the exit plane remain the same, but the terms
of the form as given below are to be added to expression (5.45)
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t
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n

The first term in (5.49) describes radiation at stopping, the second term,
the interference between the radiation produced on the particle trajectory
in vacuum (before it enters the matter) and the radiation in the matter.
The third term is the interference between the radiations appearing on the
particle trajectory in vacuum before the particle enters the plate and after
it leaves it.

With increasing L, the contribution of W\,I 7., disappears leading to con-
version of the formula describing the intensity of radiation produced in the
plate into the one for the intensity of photons produced by a particle passing
from matter into vacuum. This is understandable, as the radiation origi-
nating from the first vacuum—matter boundary is completely absorbed in
the target if the plate thickness is much greater than the absorption depth
of y-quanta.

Consider some limiting cases for the derived general formulas (5.44)—
(5.49).
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1. Absorption of y-quanta in the plate may be ignored. The plate
thickness is much smaller than the photon absorption depth. Assuming
that in (5.50)-(5.49) Ime = 0, one may obtain 3

2,2 [e] e} T 1
Wi = oot {/ dt/ dt'— exp [iw(t —t)(1 - B+ 9%
0 0 Py 2

2m2c
192 4T t— t/ 2 T [e%¢) T — ¢
+770()] +2Re/ dt/ dt = (5.50)
4poq 0 0 H? cosh” not
1 1 1
X exp {—iwt’(l -0+ 5192) —iwt(1 - B+ 5192 — 555')

2 h B T t T —
-1-77019 (not — M + S)] + 2Re/ dt/ d7'~7t
H 0 0

4q P2 cosh? ot
1 1 V2 tanh
coxp |~iar(1= o+ 3 = 3o + B (g - BT |

3Formulae (5.50), (5.51) coincide with the expressions derived by V.Ye. Pafomov when
analyzing the process of radiation in a plate (see [Pafomov (1969)],§26, formulae (26.13)-
(26.22)). Note, however, that the second and third summands in (26.15) as well as the
fifth and the sixth ones in (26.16) contain errata. Formulae (5.50), (5.51) were obtained
by Garibyan and Yan independently of us [Garibian and Yan (1976)].
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depth of the y-quantum; 193 = 1/wL, is the squared effective angle of -
quantum radiation, all the functions appearing in (5.44)-(5.49) may be
expanded in terms of a small argument ¢q. The stated condition is satisfied,
for example, for electrons with the energy F ~ 1 GeV when studying the
Mossbauer radiation spectrum, or for the electrons whose energy £ > 104
eV, when studying the spectrum of yquanta with w ~ 1 GeV. The resulting
formulas have the form

W =& e —1P¢T
T 8r2 (1— B+ 302)2[1— B+ 107 — Loe?
n e?q Ime(l — B+ 292 — 6¢’)
212w (1 — B+ 292)|1 — B+ 292 — 16|t
62 q

, 5.52
om0 el — B+ 107 — LocP? (5:52)

Wi = Wi+ (terms  ~q),

where W, is the contribution of transition radiation; e’ = Re(e — 1).
According to (5.52), at ¢ — 0 the expression for radiation intensity
includes a g-independent term (coinciding with the expression for transition
radiation of a particle uniformly moving perpendicular to the boundary),
and the terms proportional to g. The total intensity has a similar structure

Wiw = Wyjaw + Widw -

In this approximation (¢ — 0), the contribution to W)y, of the terms
proportional to ¢, is much smaller than the transition radiation. Here
the term describing the transition radiation is maximum for the photon
exit angles ¥ ~ m/E. At the same time, the terms proportional to ¢ and
associated with the contribution to Wy, of the trajectories passing through
matter (the last term in (5.52) lead to a broader angular distribution with
the effective emission angle
1
T wLl.

3. The case of small plate thicknesses.

If L < L, (5.44)—(5.45) take the most simple form. Developing (5.44)—
(5.45) as a series in powers of T, gives [Baryshevskii et al. (1977, 1976)]

e? qT

2m2c (1 — B+ 392)27

WJ_'Fiw =
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e29?  |de|Pw?T? e?qT (1 - B — 392)?
16m2c (1 — B+ 392)2  27m%¢ (1 — B+ 202)4
Note that considerable fluctuations of the energy losses due to

bremsstrahlung, generally speaking, cause changes in the spectra of transi-
tion radiation and bremsstrahlung even in a thin plate because the contri-

Wi =

bution to radiation at the frequency w will also come from electrons with
abruptly changed energy (due to radiation of a hard quantum). Thus, ac-
cording to [Baryshevskii et al. (1977)] in a thin plate with due account of
radiation losses

Wee — e29%|e — 112 (wT)? e?qT(1 — By — 509%)?

17 = Tom2(1— B + 202)2 ' 272(1 — Bo + 107)*

292 T /Eo (ﬂO _ ,8)2
17 (1= o~ 3072 Jo, (1- B+ LoPp

+

U(EO|E)dEa

- B
bremsstrahlung cross-section per unit interval of energies E of the elec-

where Sy = ,/1— 2 o(Eo|E)dE = No,(Ey|E); o,(Ep|E) is the

tron with the initial energy Ep; Fj is the limiting energy (on choosing it,
see [Podgoretsky (1977a); Baryshevsky and Grubich (1979c¢)].

In the general case, the analysis of the formulas for Wz, even in the
absence of the energy losses is only possible when using numerical methods.
Below we present the results of such an analysis at generating of resonance
photons by an electron passing through the plate containing 3¥W nuclei
(w = 46.5keV). The stated process is of great interest in connection with
the possibility of creating the sources of resonance radiation with the help
the beams of relativistic electrons [Perelshtein and Podgoretsky (1970)].

Particle scattering in a medium appreciably affects W), leading to
the fact that at the angles ¥ < m/FE the radiation intensity of the waves
with the polarization parallel to the exit plane of y-quanta differs from the
intensity of transition radiation Figure (5.1).

We also pay attention to the fact that at the angles ¥ < m/E, the
major contribution to W)z, is made by the term associated with electron
scattering in a medium and equal to W, 7,. Numerical analysis of the
formulas shows that in the range of electron energies (E > 1 GeV) we have
discussed, for the values of the radiation angles of y-quanta up to ¥ ~ v/Ime,
the predominating contribution to W, 5, comes from the term, caused by
appearance of the fan of trajectories of electron motion behind the plate
due to multiple scattering in a medium. This contribution increases with
the growth of the electron energy at fixed frequency of y-quanta. For the
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7

107 1 \ 1
0.1 1 10 9,m/E 1 10 9,m/E

10

Fig. 5.1 Angular distribution for v-quanta produced by the electron (E = 40 GeV) in
the plates of thickness L. (a), and 10L. (b) the values of L. and 10L. are borrowed from
[Baier et al. (1979)]. Solid lines — the density of the radiation energy W)z,,; Dashed-
dot lines— transition radiation produced by the electron passing through the plate at a
constant velocity directed normal to its surface; Dashed lines — the angular distribution
of Wi

angles ¥ > m/E, the radiation intensity W)z, coincides with the intensity
of transition radiation at normal transmission through the plate (see Figure
(5.1)). Moreover, the increase in the plate thickness leads to broadening of
angular distribution of the radiation energy density of y-quanta (see Figure
(5.1(b)).

We have also calculated the radiation intensity Wz, for electrons with
E =1 GeV in a plate of thickness L.. The angular distributions obtained
are similar to those given in Figure (5.1) for electrons with the energy of 40
GeV. Numerical integration of formulae for non-resonance vy-quanta with
the energy of 40 and 200 MeV, and electrons with the energy of 40 and 200
GeV, respectively has also been carried out. Calculations were made for
tungsten plates of thicknesses 0.05 L and 0.1 L. In this case a substantial
contribution to the radiation intensity W 5, proportional to ¢ is made by
the fan of vacuum trajectories.

Thus, the fan of vacuum trajectories appreciably changes the pattern of
of angular and spectral distributions of the radiation intensity for a particle
passing through matter-vacuum boundary.



Chapter 6

Scattering and Radiation in Crystals
Exposed to Variable Fields

6.1 Generation of v-quanta by Channeled Particles in the
Presence of Variable Fields

Now let a crystal in which fast particle move be affected by a variable ex-
ternal field (electromagnetic or sound). The latter can influence the process
of photon emission by a particle in two ways. On the one hand, it acts di-
rectly on the particle, causing forced vibrations in its channel, on the other
hand, the field makes the nuclei swing. As a result, the channel where the
particle moves starts bending, thus causing the appearance of a variable
force which sets the particle into vibration.

As was repeatedly pointed out, electromagnetic radiation produced by
spontaneous radiation transitions may be considered as the radiation of a
certain oscillator (atom). Causing vibrations of the crystal nucleus, the ex-
ternal field leads to oscillations of the point of the equilibrium position of the
oscillator. Suppose that the oscillation frequency of the equilibrium point
under the external field is much less than that of the oscillator (i.e., the
particle vibration frequency in the channel). In this case the oscillator fol-
lows the oscillations of the equilibrium point adiabatically. High-frequency
vibrations of the charge, i.e., particle vibrations about the equilibrium po-
sition result in spontaneous radiation, discussed above; low-frequency os-
cillations, which are due to oscillations of the equilibrium point, lead to
additional electromagnetic radiation. Consider the features of this radi-
ation, following [Baryshevsky et al. (1980d,b)]. (This radiation was also
discussed in [Plotnikov et al. (1979)] for a particular case of a standing
acoustic wave ).

Let a crystal be affected by an external wave. As a result, the centers
of mass of the atoms execute forced oscillations R'® = Ff)s) cos(/@]:fi — Qst),

)

109
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where ff)s)

is the amplitude of forced oscillations; R; - is the coordinate of the
equilibrium point of the i-th nucleus; K is the wave vector of the external
wave; (s is the external wave frequency. When a particle moves in the
channel oriented along the z-axis, vibrations of nuclei cause oscillations of
the equilibrium position of the oscillator corresponding to the particle in the
xy plane as ™ = 77| cos 't. Here Q' = k,c—( is the oscillation frequency
of the equilibrium position, ¢ is the velocity of light. In the adiabatic case
the particle trajectory in a transverse plane 7 (¢) is determined by the sum
71 (t) =75 (t) + 75 (), where 7 (¢) is the trajectory of the charged particle
in the channel.

Let us give a more detailed consideration of particle motion in the chan-
nel exposed to, for example an ultrasonic wave. Assume that the wave
moves in a crystal along the z-axis. The channel bends caused by the un-
dulator may result in dechanneling. The particle will not leave the channel
if the minimal radius of curvature of the channel p,;, satisfies the inequality
following from the equilibrium conditions

myv?  myc? .
~ S |VJ_U(TJ_)|maX, (61)

Pmin Pmin

: : . _ s 2\—1
where m is the particle rest mass; pmin = (1§, £°)

; u(7)) is the potential
energy of particle interaction with the crystal plane.

Suppose that we consider the particles with the amplitude of free vi-
brations in the channel 7§, < d/2 (d is the channel width). In this
case the amplitude of ultrasonic vibrations should satisfy the condition
75, < AUumax/EK?, E is the particle energy. For example, in silicon
rs, < 107* cm for E ~ 1 GeV and €, ~ 27 - 107 s7!. Spectral distri-
bution of radiation induced by oscillations of the center of equilibrium of
the oscillator may be written in the form

dN e2L

s w w
% = M(TOLQ/)2 1-— 2(,,_}7/ + 2(7/)2 5 (62)

W,

m m

where w/,, = 2Q0'9?; L is the crystal thickness, L > 1/k. If the potential
u(ry) is harmonic, the formula for the spectrum of radiation produced by
free vibrations of a particle in the channel is similar to (6.2). As a result,
the relation of the intensity of radiation induced by the external wave to
the intensity of spontaneous radiation can be written as follows

B (rSJ_Q’>2 _ AW 63
5.8 po3Q3(rg,)?
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where 2 and r§, are the frequency and the amplitude of particle vibrations
in the channel; W, = ipff’lﬁi(rgL)Q is the power of the ultrasonic wave
in W/cm?, p is the density of the medium. Study radiation in the spectral
range w ~ 2Q'v2. According to the condition (6.1),
Qu
Braz ~ (Q S) > 1.

sC

So, for positrons with the energy B ~ 1 GeV at the ultrasonic wave power
W, ~ 10® W/cm? and frequency 2 ~ 27107 s71, the vibration amplitude
s, ~ 1075 and the relation B ~ 10 for r§, ~ d/2.

In the soft part of spectrum, it is important to take into account refrac-
tion and absorption of photons. he appropriate expression for the spectrum
is analogous to that obtained above for spontaneous radiation, and it reads

AN e*(rg )2

ar _CWout) 19 ¥ W2 _ _ﬁ)
dw Ahct 1 20.);,1 +2(W;n) :|labs (1 e lab , (6.4)

where [, is the absorption length of the photon with frequency w, ' =
k.U, —{s. Note that the wave number is related to frequency as k = k(£s).
For the acoustic branch in the long wave limit
R=——,
US
v, is the velocity of sound. For light
QS’

=— Qsa
K cn()

where n(£2;) is the refractive index.

When a channeled particle moves in a crystal in the presence of a light
wave, it undergoes forced vibrations caused by the direct effect of the force
from the wave. In this case the amplitude of forced vibrations is

E, . _
Ty = T (02— Q% —iQT)L (6.5)
2mry
where E, = Ey(1 — Bnoiiyfi.) is the x-component of the external field

strength in the medium (the angle of the wave vector & with the particle
momentum p’ is assumed to be much less than unity or close to 7).
The frequency of the emitted photon

w= (1 - %n(w) (30519)_1

As the amplitude of particle forced vibrations cannot exceed the chan-
nel width (and the radiation intensity is only determined by the vibration
amplitude and frequency), the intensity of the radiation due to the electro-
magnetic wave cannot exceed the intensity of spontaneous radiation of a
channeled particle, vibrating with the same frequency and amplitude.
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6.2 Coherent Scattering of Photons by a Beam of Chan-
neled Particles. The Effect of Super-radiation

We have already pointed out in (2.2) that a channeled particle may be
considered as a fast atom. This allows us to state that under appropri-
ate conditions for such particles it is possible to observe numerous effects
known in atomic physics. Moreover, the similarity of the properties of a
channeled particle and a fast atom enables using the results of the photon-
atom interaction theory rather than carrying out new calculations in order
to find any process (scattering, photon radiation or absorption). For this
purpose suffice it in the beginning to consider the process in the coordinate
system, where the initial longitudinal momentum of a particle is zero. In
this system we deal with a resting atom, the cross-section (amplitude) of
photon scattering by which is well known. Further, it is necessary to con-
vert the scattering cross-section (amplitude) to the laboratory coordinate
system according to simple rules (see, for example, [Goldberger and Watson
(1984(@)], p.86-97) with due account of the fact that the atom correspond-
ing to the channeled particle has a one-dimensional (axial channeling) or
two-dimensional (planar channeling) momentum. For example, the am-
plitude of elastic coherent forward scattering of a photon by a channeled
particle

f(w) VIS, (6.6)

- |1 — B.n(w) cos |

where f(w’) is the scattering amplitude in the rest system (v, = 0)of the

channeled particle; w’ = (1 — 8,n(w) cos¥)yw is the photon frequency in
the system. The amplitude f(w’) has a usual Breit-Wigner form.

Using the optical theorem, we also immediately find the total cross-
section of photon scattering by a channeled particle o = %Im f(w).

Now estimate the addition de to the dielectric permittivity of a crys-
tal caused by photon interaction with a beam of particles. According to
[Baryshevsky (1976); Lax (1951)] de = ‘177(’27‘2402]”((,;;), where p is the beam
density; the difference of the constant A from unity is due to the difference
between the mean field in the medium and the local one acting on a moving
atom. For the media with ¢ close to unity, A ~ 1. The effect of refraction
by the beam is appreciable, when %%&:L > 1. For a particle moving in a
harmonic potential,

To w’
S 7

2w il

flw) =
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where rq is the classical electron radius; €2’ and I are the oscillation fre-
quency of the oscillator and the width of the transition in the particle rest
system, respectively. As a result, under the resonance conditions refraction
is great, if 2”5% > 1; ' = I"y~ ! is the line width in the laboratory system.
If the particle bunch thrown onto a crystal is accelerated as a whole, py~!
is the bunch density before the acceleration pg. As a result, py > ﬁ,
ie., po > 10 for I' = 102 s7! and L = 1 cm. It should be noted that
according to (6.6) the anomalous and complex Doppler effects lead to the
fact that in a resonance with a moving oscillator an emitted hard photon
appears along with a soft one. Therefore hard photons are also effectively
refracted by a beam.

Since the amplitude of photon scattering by a channeled particle de-
pends on the photon polarization, the channeled beam is an optically
anisotropic medium. For example, in the case of planar channeling a beam
is a birefringent medium. Under the stated conditions, the particle inter-
action through the field of photons is considerable. As a consequence, the
formation of exciton polaritons in such a beam is possible, and when the
beam is affected by a light pulse, the oscillators corresponding to chan-
neled particles may be driven into the super-radiant state. In their system
a boson avalanche may evolve, and eventually generation of ultrashort ra-
diation pulses may occur [Baryshevsky (1980d,a)] (compare with similar
phenomena in atomic physics [Allen and Eberly (1975); Bogdanov et al.
(1979))).

The presence of spin in electrons leads to spin-orbital level splitting at
axial channeling, i.e., to the appearance of fine structure of the levels. That
is why the effect of a circularly polarized electromagnetic wave on such par-
ticles will result in spin polarization of the electron beam (compare with
the effects of electron polarization through photoionization of atoms [Delone
and Fedorov (1979)]). Note that in the transition of channeled electrons
between the states with different orbital moments, the efficiency of their
interaction with a crystal changes sharply. s-electrons with enhanced den-
sity at nuclei dechannel faster than, for example, p-electrons. If channeled
unpolarized electrons are, for example, in p-state, then a circularly polar-
ized wave, causing the transition between one of the components of the fine
structure of this state and s-state, will transfer a fraction of the electrons
to s-state, from which they dechannel rapidly. As a result, the passing
beam will appear to be partially polarized. If the crystal is thin enough
to neglect dechanelling processes, in order to select polarized electrons, one
can make use of the fact that the angular distributions of electrons passing
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through the crystal depend on the state in which they were in the crystal.
A circularly polarized wave, transferring electrons from s-state to one of
the states of the fine structure, will cause, for example, non-zero degree of
electron polarization in the directions of the p-electron escape.

We also point out that, due to equally probable occupation of the state
with different projection of the orbital moment on the axis, the degree of
circular polarization of photons produced by a particle through axial chan-
neling is practically zero. A circularly polarized wave, changing the occu-
pation of different projections of the orbital moment, causes the emission
of circularly polarized photons.

The probabilities of the induced processes discussed here are easy to
find, according to the well known rules (see, for example, [Berestetsky et al.
(1968)], §44, using the probability of a spontaneous process for polarized
particles, whose explicit form is given in (3.2).

An intense light wave, causing the transitions between different states of
a channeled particle will lead to the fact that the particle beam leaving the
crystal will turn out to be spatially modulated (compare with the effect of
modulation of a beam passing through a dielectric plate [Varshalovich and
D’yakonov (1970, 1971)], and the modulation effect at electron diffraction
in a single crystal [Fedorov (1980b)]). This new modulation mechanism
exhibits high efficiency, and, due to fine splitting of levels, causes spatial
modulation of the degree of polarization of the initially unpolarized par-
ticle beam (provided the crystal is illuminated (irradiated) by a circularly
polarized wave).

As mentioned above, coherent occupation of the levels of transverse
motion at the particle entering the crystal brings about beatings in the
radiation intensity, depending on the target thickness. The degeneracy of
the levels, likewise in atomic physics will give the opportunity to observe
the burst in the intensity of radiation produced by channeled particles when
the level crossing is stimulated, for example, by means of crystal bending.

6.3 Induced Scattering and Radiation under Diffraction
Conditions

It is common knowledge (also see above) that, due to the periodic arrange-
ment of atoms (nuclei) the energy spectrum of particles (y-quanta) moving
in a crystal exhibits the energy-band structure £ 7 (f is the band number,

k is the reduced quasi-momentum). For a particle with spin the spectrum
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also depends on the spin state of the incident beam [Baryshevsky (1976)].
The energy-band structure of the spectrum causes spontaneous transitions
between the bands accompanied by the emission of photons, phonons, plas-
mons, etc., and, as a result, simulated transitions. Simulated transitions
between the bands bring about resonance repolarization, modulation of a
neutron beam, the change in the rate of nuclear reactions in crystals, and
polarization of particles [Baryshevsky (1976, 1980b, 1979a)]. As an example
consider simulated neutron transitions between the bands under the action
of phonons , i.e., under ultrasonic pumping. By the action of ultrasound on
a crystal nuclei in the equilibrium position start executing forced vibrations
according to
SR;i(t) = @sin(RR; — Q(k)t + 6), (6.7)

where @ is the amplitude of forced vibrations of the nucleus; £ is the wave
vector of phonons; Q(x) is the phonon frequency; § is the initial vibration
phase; R; is the equilibrium coordinate of the nucleus in the absence of
phonons.

The Schrodinger equation describing diffraction of neutrons by a vibrat-
ing crystal has the form

ng { —A, +Zvrf asin(ﬁﬁi9t+6)]}w,

where V is the coherent potentlal of interaction of neutrons with nuclei.
In the expression for the potential (6.8) perform the summation over
positions of nuclei. With this aim in view introduce the Fourier transform

of the potential V(g):
SRi(t mE Z / d*qV(q)

ZVF R; —
X exp { rfRifd'sin(ERithJr(;))}
1

o> / V(e TR {Jo ()

—2i Z Jon+1(@@) sin[(2n + 1)(RR; — Qt + 6)]
n=0

o0
+2 Z Jon (G@0) cos[2n(RR; — Qt + 5)]} . (6.8)
n=0

To perform the summation over ¢ in (6.8), note that

- 3 27)3
Zefz(qfnn)Ri — ( 7T) Zé(d'_ nik — 27-(-7?)7 (69)

Vo

T
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where 277 is the reciprocal lattice vector; vy is the volume of the unit cell
(it is assumed to be simple) in the crystal.

Further we shall consider diffraction by a set of planes characterized by
such a vector 277 that 277a < 1 (277 ~ 10% +10° em™!, @ ~ 1071° cm).
In this case in (6.8) it takes only to retain the terms containing Jo(ga) ~ 1
and J1(qd@) ~ 3qd. As a result we have

1 oy 4 _
u(t) = Uio Z V (2r7) e T 4 (5V(+)(f’)elm — 6‘/(7)(7?)6—1975;
1 ) o
Vi) (1) = 5= DS V(27 (2nra)e T T, (6.10)

In view of (6.10) the the potential of neutron interaction with the crystal
lattice moving under ultrasonic wave may be represented as a sum of two
summands. The first one describes particle diffraction in a static grating,
the second one - the time-periodic perturbation, which is the superposition
of plane wave traveling in the crystal. Diffraction by these waves is pos-
sible as well as diffraction by static ones produced by the first summand,
which, unlike diffraction in the static case, is accompanied by the change
in the particle energy by the amount divisible into h{2. As a consequence,
the perturbation described by the second summand may cause resonant
transitions between the energy band.

To find the probability of the interband transition per unit time under
periodic perturbation, one should know stationary states of an unperturbed
problem. (In the case in question the stationary wave functions describing
the diffraction process in a crystal are well known [Baryshevsky (1976)]).
If a crystal is a plate of thickness [, inside the crystal the wave function of
the initial state in the two-wave Laue case has the form

4
1
Pt = =73 Z (6.11)

where L? is the normalization volume; El = (kl,kzl) kg = (EL,EZQ);
ks = ky + 207 ky = kg + 2775 ko1 = kony(2); koo = kano(ks); k. is the
z-th component of the wave vector of neutrons in a vacuum; the expres-
sions for refractive indices under diffraction conditions are given in [Bary-
shevsky (1976)); k. is the component of the wave vector of the incident
wave, perpendicular to the z-axis (parallel to the crystal surface); 277 is
the reciprocal lattice vector characterizing the family of diffracting planes.

In the final state one should use the wave function of the type 1/),(;),
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under diffraction conditions having the form

4 ’
;(J)(f’) = \/% az::l A" exp(ik"F) exp (—i%s&‘l) ) (6.12)
where e = &; e} = &); k' is the wave number in a vacuum of the neutron
which has undergone the transition; €, and 7y determining the refractive
indices n; and ns are given in [Baryshevsky (1976)] (also see (4.4).
The probability of transition per unit time that is of interest to us is
331/

Wz = 2%\ <oV [0l > [2o(By, + ha — Ek)% (6.13)
where the plus (minus) sign refers to the transitions with the energy loss
(acquisition); Er = h?k?/2m; Ey, = h*k"? /2m.

Consider the matrix element appearing in (6.13). Integrated in it is
performed with respect to the volume of the crystal plate. As the wave
functions and perturbation §V(1) are the superpositions of plane waves,
then integration over the crystal surface leads to appearance in the matrix
element of two-dimensional d-functions oft the form & (Eﬂ_ =27 R, —k1),
fixing the component of the momentum parallel to the plate surface.

The stated d-functions together with the J-function with respect to en-
ergy included into (6.13) allow in (6.13) integration over d3k’. As a result,
one-dimensional integrals of the type as follows will remain in (6.13)

1 l
— / exp{—i(kl, Kk, — kaoz)2}dz
0

L
_ iexp{—i(lls'oj‘/z th, —kax)l} — 1’ (6.14)
L kY, £k, — kaz
which are the sharp functions of the difference of the z-projections of the
wave numbers. Such integrals take on their maximum values when the

difference of the real parts of the wave numbers vanishes. In other words,
the process of neutron interaction with a vibrating crystal is governed by
energy-momentum conservation law of the form

Ey = Bk F hw;

Ky =k FRL+ 207

or

F| =k, FR, + 277 + 277 and so on,
(6.15)

Re(kl,, = ko, F k. + 27T2)
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or Rek!,, =Rekq, F Kk, + 2n7, + 27, and so on, where F& + 277" is the
momentum due to dV interaction; E, k + 277 is the primary momentum
due to the particle.

If equalities (6.15) are fulfilled, then in the case when the crystal depth
is less than the particle absorption depth, the integral in (6.14) equals [L~1.
Substitution of (6.14) into (6.13) demonstrates that the probability of tran-
sition per unit time integrated over d®k’ proves to be an oscillating function
of the crystal thickness [ with the spatial oscillation periods determined by
the difference of the refractive indices of the plane waves involved in diffrac-
tion. The maximum value of the probability of transition is attained when
(6.15) is fulfilled, being equal, for example, for neutrons exiting behind
the crystal in the positive direction of the z-axis, in the case of the exact
fulfillment of the Bragg conditions to

V(2" (2r7d) |2

W = 7
/ F'k hQ’UL‘ 21}0

where v, is the z-th component of the particle velocity.

(6.16)

The experimentally observable quantity is the cross-section of the pro-
cess 0 = L3W /v,, or the fraction of particles that have undergone a tran-
sition, per one incident particle: SN = o/L?. From (6.16) follows that

12 2

24,2
h2v?

V (2rr")(2n7" )
2’1}0

ON ~

(6.17)

According to [Baryshevsky (1976)] V(277) may be expressed in terms of
the amplitude of neutron scattering by a nucleus:

2

V(2nT) = —%f@‘w(”, (6.18)
where f is the amplitude of coherent scattering of the neutron by the nu-
cleus; e~ (7is the Debye-Waller factor.

In view of (6.17) the value of §N is maximum when the nuclei vibrate
along the direction of 7, e.i., perpendicular to the planes by which the
particle is diffracted. Note that the analogous result is also obtained in
the case when the change in the particle energy through diffraction by a
vibrating grating is ignored (static approximation, see [Entin (1979)]).

Estimate the magnitude of the effect. The scattering amplitudes are of
the order of 107'2 + 1073 cm, the vibration amplitudes - a ~ 10719 ¢
Hence, for thermal neutrons (v ~ 10° cm/sec) the fraction of particles that
have undergone a transition is 6N ~ 102/2. From this follows that at crystal
thicknesses as small as [ ~ 10~! cm all the particles undergo a transition
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with a change in energy. At large thicknesses the perturbation theory is
not applicable. In this case it is helpful to consider the problem in terms
of effective refractive indices in a rotating coordinate system [Baryshevsky
(1976); Varshalovich and D’yakonov (1970)], or to usie the conception of
quasi-energy.

Vibrations of nuclei in a crystal may be caused by either an ultrasonic
or an electromagnetic wave. Under diffraction (channeling) of charged par-
ticles in a crystal the wave affects not only the nuclei but also the particle
itself, bringing about the additional mechanism of interband transitions.
Interband transitions of electrons induced by ultrasound (electromagnetic
field) are accompanied by simulated radiation. Naturally, spontaneous in-
terband transitions also exist.

Radiation through diffraction in the case of optical transitions between
the neighboring bands in an infinite crystal without reference to spin struc-
ture of the bands was discussed in [Fedorov and Smirnov (1974); Fedorov
et al. (1973); Fedorov (1980a)]. In view of the above analysis, taking into
account a finite crystal thickness results in appearing of oscillations of the
radiation intensity, depending on [ and electron energies. The dependence of
the band structure of electrons diffracting in a crystal on their spin will lead
to the dependence of the intensity and polarization properties of radiation
on the beam polarization state, as well as polarization of a non-polarized
beam ((6.2)). Resonant interband transitions of electrons will cause the
appearance of a spatially modulated beam behind the crystal. The beam
modulation period will depend on the spin orientation. As a result, the
initially non-polarized beam behind the crystal will prove to be spatially
polarized in some regions of space. Of course, the aforesaid also refers to
the electrons which moved in the channeling regime.

Let now 7y-quanta be diffracted in a crystal (light in a liquid crystal
or in some other periodic structure (array)). In this case even in a non-
magnetic crystal in a wide energy range (from several kiloelectron-volts to
tens and hundreds of gigaelectron-volts) there is band splitting, depend-
ing on the photon polarization state. Diffraction of Mossbauer y-radiation
in polarized crystals is considered in [Baryshevsky (1976)]. At two-wave
diffraction the wave functions of y-quanta are analogous to the functions in
(4.37)-(4.40). For this reason the structure of the matrix element describ-
ing the transition of a y-quantum from one band state to another is also
similar to the structure of the matrix element appearing in (6.13). Conse-
quently, ultrasonic (electromagnetic field) induces resonant repolarization
of the diffracting beam of «-quanta (light passing through a liquid crystal
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and etc.) under the condition determined by the conservation laws (6.15).
The process of the interband transition of X-rays by the action of ultra-
sound without reference to the change in their frequency and polarization
through the transition was treated in [Entin (1979)]. In the case of Moss-
bauer y-quanta it is crucial that the change in the y-quantum frequency
through transition described by the conservation law should be taken into
account.

Due to the close connection between the phenomena of diffraction and
mirror reflection under diffraction conditions [Baryshevsky (1976)], analo-
gous effects will manifest themselves for mirror reflected waves (neutrons,
~v-quanta, light) too. In fact, the process of the interband transition of X-
rays and y-quanta under the electromagnetic wave causing vibrations of the
crystal nuclei can be treated the process of coherent coalescence (splitting)
of a y-quantum and an optical photon.

6.4 Optical Anisotropy in a Rotating Coordinate System

It has been shown above that spectral-angular distribution of photons pro-
duced by particles passing through a crystal, depend considerably on the
refracting properties of the medium. If a crystal is placed in an external
variable field, its refracting properties change sharply. In particular, the
effects caused by optical anisotropy of crystals in the «y-range acquire qual-
itatively new features, when the material is placed in a time-dependent
external field (electromagnetic, sound).

To consider the essence of the arising phenomena, let us begin with a
simple example of neutron refraction in a constant magnetic field on which a
time-dependent transverse variable field is imposed [Baryshevsky (1979a)].
The Schrodinger equation describing the stated process has the form:

0 h? P
? % = {_%AT - MH(TJ)}M (619)

where m is the neutron mass; fi = pd is its magnetic moment; & is the
vector made up of the Pauli matrices o,,0y,0.; ﬁ(f’, t) is the magnetic
field acting on the neutron at point 7 at moment ¢ with the components
H, = H, coswt, H, = H, sinwt, H, is time-independent; w is the rotation
frequency of the transverse magnetic field.

Using the explicit form of &, one may obtain the following system of

equations for the components 1, and s of the spinor wave function ¢ =
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(1)

5‘ h? »
o _ 5= Aptpy — pHohy — pH e o
815 2m
57/)2 h? .
= 77Ar Hz —uH twt N .2
8t 2 VYo + pH o — pH e )y (6.20)
Introduce new functions ¢, and 5, using the following transformation
W
1 = p1exp ( ) o = g exp (zat) ) (6.21)

The transformation (6.21) is equivalent to that performing the conversion to
the coordinate system rotating about the z-axis at the frequency w [Slichter
(1963)]. As a result, (6.20) goes over to the following system:

8901 huw h2
ih——= 1= ——Ap 01 — pH 0y — nH, po;

ot + 290 2m P11 = il = pH Lo
. 8@2 hw K2

A== — —py = ——A, H, vy — nH | 1. .22
th—=— 5 ¢ 5y ez + pHan — pHipr (6.22)

Introduction of the spinor function ¢ = <21> , enables us to write (6.22)
2

as follows

dp h? =
h— = —— A, — jiH 2
ih; o Arp — A (W), (6.23)

where H(w) has the components H,(w) = H,, Hy(w) =0, H.(w) = H. —
hw

o and at the initial instant of time the function ¢ is

— a(to) (i%to)
Qo(tO) - {%(to) (—Z.Q%to) } :

Thus, the problem of refraction of a neutron wave in a time-dependent
magnetic field has reduced to the problem of wave refraction in a constant
effective magnetic field H (w) depending on frequency w.

Due to the complete equivalence of equation (6.23) and the equations
describing neutron motion in a time-independent magnetic field H (7), all
the conclusions concerning the laws of refraction and mirror reflection in
it hold true, however, with a considerable difference that both the refrac-
tive index and the amplitude of the reflected neutron wave now become
dependent on the external field frequency w.

The situation when H, > H, seems to be of particular interest. In

this case at the frequency w = Q“H z the component of the effective field H,
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vanishes, and the effective field H(w) equals H, which is much less than
the value of the magnetic field in the absence without resonance. Hence, the
refractive index (coefficient of mirror reflection) will appear to be smaller.
For instance, if without a rotating field, the magnetic field was so great
that the neutrons experienced total mirror reflection from it, under the
resonance conditions, the neutrons will pass through the area occupied by
the magnetic field. Similarly, the polarization state of the neutron beam
will prove to be strongly dependent on the frequency of a variable field.

Now let neutrons (electrons and so on) be incident onto a single crystal
with polarized electrons (nuclei). Then the area occupied by the crystal
may be described in terms of a spatially periodic effective magnetic field
E(F) If the crystal is placed in the external rotating magnetic field (or
excite a circular sound wave in it ), then a spatially periodic w-dependent
field B (F,w) emerges in a rotating system. Mathematical formulation of
the particle beam propagation in the periodic field g(f’, w) is completely
equivalent to that describing the phenomena of refraction, diffraction and
mirror reflection of particles in single crystals in the absence of a variable
field [Baryshevsky (1976, 1979a)]. Therefore the formulae for the refractive
indices of a crystal placed in a variable field under diffraction conditions
are similar [Baryshevsky (1976, 1979a)].

It is common knowledge that under diffraction of particles in crystals
the effect of anomalous transmission (anomalous suppression of inelastic
processes, nuclear reactions) arises [Pinsker (1974); Afanasiev and Kagan
(1965)]. In the case under consideration, due to the frequency dependence
of the periodic field E(F,w), a new phenomenon appears: the effect of
anomalous transmission of particles (y-quanta) through crystals, which de-
pends on the frequency of the external field (electromagnetic, sound). (The
probability of inelastic processes and nuclear reactions also depends signifi-
cantly on the frequency of the external field). It is important to emphasize
that effect of anomalous transmission and reaction suppression depending
on the frequency of the external field occurs for both instantaneous particle
(y-quantum) intensity and the intensity averaged over the alteration period
of the external variable field.

Note that, as shown in [Baryshevsky (1979c); Baryshevskii (1981)],
even in non-magnetic unpolarized crystals placed in an external magnetic
field, one may observe multi-frequency precession of neutron spin and H-
dependent effect of suppression of nuclear reactions. When the crystal is
exposed to an external variable field (magnetic, sound) the effects depend-
ing on the field frequency emerge: anomalous suppression of nuclear reac-
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tions (analogous to that considered above) and multi-frequency precession
of a neutron spin.

Thus, an external variable field sharply changes refractive properties
of a crystal under diffraction, which eventually manifests directly in the
process of radiation. By way of example, consider diffraction of neutrons
in a constant magnetic field.

According to [Baryshevsky (1976)] the system of equations for the neu-
tron wave function (7)) describing the dynamic diffraction in an arbitrary
magnetically-ordered crystal with polarized nuclei has the form

k2
(kg — 1) Zg —277) = 0;
0

() = Z o(k + 2n7) expli(k + 277)7; (6.24)

T

Q(F) = gnuc(F) + Gmag (7_")
QO 0o Z Finae @)+ Fimnag ()75, (6.25)

where §(7) is the structure amplitude; fj(T) is the amplitude of coherent
scattering by the j-th center included in the unit cell; 7 is the coordinate
of the j-th center; the summation is performed over all the scatterers con-
stituting the unit cell; g is the unit cell volume; Eo is the wave vector of
the neutron incident on a crystal.

At 7 # 0 the amplitude of coherent magnetic scattering is defined by
the expression [Baryshevsky (1976)]

fj mag( 7) = —4mpy, M — Oji; Fj(F)e_Wj(T)~ (6.26)
T

At 7 = 0 the magnetic contribution to §(0) has the form

2 B}
i 5

— 2
a5 70 (6:27)

Jmag (0) =
where B is the macroscopic magnetic field of the target; m is the particle
mass.

In the case of a non-magnetic unpolarized crystal placed in a constant
magnetic field of strength H, the structure amplitudes of (6.25) can be
written as follows:

2m,un > 77
= gz SO0 g o (6.28)



124 Channeling, Radiation and Reactions in Crystals under High Energy

gr0(7) = 9(7) onngJW (6.29)

Choose the quantization axis parallel to the direction of the field H. As
a result, the operator system (6.24) will reduce to two independent systems
of equations for either neutron spin component, parallel ¢, and antiparall
p_ to the quantization axis:

= . .
(g ~1) £+~ Zoseat—2em =0,
0

2
9+(0) = gnuc(0) £ h2k‘2

The system of equations (6.17) has a standard form for the dynamical
diffraction theory. This enables us to immediately write the expression for

the wave function of a neutron that has passed through the crystal plate of
thickness [ [Baryshevsky (1976)]:

007 (03 )

H gi( ) gnuc(F)' (6.30)

where <c+ ) is the spin wave function of the neutrons incident of the plate;

the z-axis is directed along the quantization axis;

(2¢5 — 9,(0)) exp (ikos‘{,yl—o) — (269 — 9,(0)) exp (szEQ 70) e
Yoli) = e
2(e5 —€7)

_% [exp (ik;ogflfl> — exp (ikosgl)] ei(E°+2’”?)F7
2(e§ —€9) Yo ~

1
£l(2) = 1 {1+ 8)g,(0) — Ba

/B + g, (0) (1 = B +4Bg(r)g(—7)} ;
(6.31)

o = + ((+) corresponds to the neutrons with spin parallel to H, ()
corresponds to the neutrons with the opposite spin direction); vo = Eoﬁ /ko;
7i is the normal to the crystal surface; o = 27TF(27TF+2E0)/k% is the quantity
characterizing deviation from the exact Bragg conditions; 8 = vo/71; 71 =
(ko + 277)7i/|ky + 2n7. In the case of the symmetric Laue diffraction
Y =1, B=1and

92) = % {290(0) —at/a?+ 49(7*)9(—;)} : (6.32)
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First consider how the magnetic field influences the diffracted neutrons.
Using the expression for the wave function (6.21), write the expression for
the intensity of the diffracted wave:

2

2 |9(7)
Ay

Iy = |es i [* + ey |? =

l l
X {exp <k0Im2€§r’m> + exp (kOIm2€1"

)
Ayl l
—2cos (koRe;%> exp {—kolm(sf + 5;)% }
2 oot
+le_|?B? e —koIm2e, —
| ‘ ﬂ A Xp olm 2 P
l A_
+exp (-koImQ&:l_) — 2co8 <k0Re>
Y0 2 7
X exp [—k:OIm(el_ + 52_)7[] } , (6.33)
0
where
Ax = {[g+(0)(1 — B) + Baf® + 4B9(P)g(—7)} /% (6.34)

First of all, note that in the presence of the external magnetic field,
oscillations of the intensity of the diffracted wave (the pendulum effect),
unlike those in the case when H = 0, occur at two spatial frequencies

A A_
K1 = koRe%; Ko = kORe7. (6.35)
In symmetric diffraction the frequencies x; and ks coincide and do not

depend on the value of the magnetic field:

1
K1 =FKy=K= k‘oRea\/oz2 + 49(7)g(—7) (6.36)

If the neutron beam is polarized parallel to the magnetic field (¢; = 1,
_ =0), then I, oscillates at the frequency k1, if antiparallel, I; oscillates
at the frequency ko # k1.

Let an unpolarized neutron beam fall upon a crystal. In this case I
is given by expression (6.33), where |c,|? = |c_|? = 1/2. As k1 # kg, at
certain values of the magnetic field H the situation is possible, when the
contribution to I; coming from one of the neutron spin components appears
to be zero. Hence, at such values of H the diffracted beam will be fully
polarized.

The intense neutron beam fully polarized along the magnetic field will
be obtained at the exit from the crystal plate provided that one of the
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summands in (6.33) takes on its maximum value, with the second summand
taking on its minimum value. For simplicity, assume that the crystal is non-
absorptive, and the exponential factors in (6.33) are equal to unity.

When in (6.33) the cosine in the augend equals —1, and in the addend
- +1, we obtain a beam fully polarized along the field. The neutron beam
fully polarized opposite the field is obtained when the cosine in the augend
becomes +1, and in the addend it quals —1. In the general case this con-
dition may be written as follows with due account of the explicit form for
frequencies k1 and kg

Rekg3 Ayt =27N,
e Yo
fOsz 1{RekoéA_,Yl0 — 927N/ + (637)

Rek’Q%A+ L — 97N+,
— Yo
forp. =1 { Rekoz A T,lo =27 N’; (6.38)

where N and N’ are integral numbers.

Find the phase difference 7 between the components of the wave function
of neutrons corresponding to the parallel and anti-parallel spin states when
passing through the plate of thickness [, the magnetic field strength H being
equal to

11

Estimation of the expression (6.39) shows that in the asymmetric diffrac-
tion case at (1 — 8) ~ 1071, 1 = 0.1 cm, A ~ 1A and g(0) ~ 1079, the
phase difference is 7 at the magnetic field strength of the order of 1000 Gs.
Hence, at such strength of the magnetic field one may obtain fully polarized
neutron beams with the possibility to specify the polarization direction by
changing the direction of the magnetic field.

By varying the value of the magnetic field strength, it is also possible to
modulate the intensity of the diffracted beam. The degree of modulation
can be close to 100%. Indeed, choose the plate thickness [ so that in the
absence of the magnetic field the intensity of the diffracted beam would be
zero. Then, as follows from (6.33), with the external magnetic field imposed,
the intensity becomes non-zero. With the strength of the external magnetic
field vanishing, the frequencies k1 and k2 become equal to each other, and
the intensity of the diffracted beam starts oscillating at one frequency only,
which is defined by equality (6.36), so we have an ordinary pendulum effect.

Now consider the influence of the magnetic field on the beam absorption
in a crystal. From (6.31) follows that at g1 (0) # ¢g—(0) the imaginary parts
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of 5&2) and €1(2) will be different, and what is more, they will reveal different
dependence on the value of the magnetic field:

Imef(y) = i(l + B)Img, (0) £ [(ReA,)?

+(ImA,)?] 2 Sin (; arctan ;:jj) , (6.40)

where A, are given by equality (6.34).
Note that if ImA, = 0, then

Ime{ = Imeg. (6.41)
This is attained at the value of the magnetic field

H= —(0)
2(1 = B)Balmg(0) + (1 — B)*Img*(0) + 489(7)g(—7)

. 2(1— B)2Img(0)

R?k§
xio

6.42
2, (6.42)

where (o) indicates the neutron spin state for which (6.42) holds.

As a result, in the case of the asymmetric Laue diffraction under con-
sideration, the effect of the anomalous transmission of particles through
a crystal, and, hence, the yield of nuclear reactions will depend on the
strength of the external magnetic field.

Analyze polarization characteristics of the diffracted neutron beam in
more detail.

To fix the idea, we shall assume that the polarization vector of neutrons
incident on a crystal py is directed perpendicular to the quantization axis,
i.e. to the z-axis (the z-axis is directed parallel to H ). The direction of py
is chosen as the x-axis so that ¢, = c_ = 11/2. Using (6.31), immediately
find the components p, and p, of the neutron polarization vector in the
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diffracted wave:

B2 lg()I”

4 |(eF —ef)(ez — €7

Py = T {cos [koRe(e] —e7)

l l
X — + 6] exp {kOIm(sir +e7)—
70 7o

—cos |koRe(e] — 52_)L +6
L Yo

l
x exp |—koIm(e] +e5)—
L o

l
—cos |koRe(eg —e7)— + 6
0
I l
x exp |—koIm(ed +e7)—
7o |
RN
+cos |koRe(eg —e5)— + 6
L Yo

g .
xexp |—koIm(eg +e5)— } ,
Yo |

where § = 64 — d_ and the following notation is used

9(7) ::‘ 9(7)
2y —er) 125 —ep)

The component p, is obtained from p, by replacing cos with — sin.

04+

(6.43)

Using (6.30) and (6.31) the differences of the values of e appearing in

(6.33) are written as follows:
ef —er =G+ %(A+ —A_);
ef —e; =G+ i(fh +A);
5 —e; =G — i(zﬁh + A_);

_ 1
ef —e5 =G - (A — A);

M,
h2k2

G=—2H(1+p)

(6.44)

In the case of the symmetric Laue diffraction when =1, Ay and A_
are equal. And the neutron polarization vector undergoes beatings with

changes in H at one frequency, determined by the Larmour spin precession

frequency in a magnetic field.
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At the asymmetric Laue diffraction (8 # 1) the situation changes dras-
tically. Ay # A_, and with the changes in H, the neutron polarization
vector undergoes beating at four different frequencies determined by the
differences (6.44):

hk? _ hk3 _
wy = mORe( —€]); we = mORe( -5 );
hk?2 hk?
wy = 0Re(52+ €1 ); wa= ?Re(s2 —€5). (6.45)

From (6.43) and (6 44) follows that at relatively small magnetic fields
(H = 10® + 10* Gs) the effect of multi-frequency precession in a crystal
should be clearly observed even at [ ~ 10% = 10

Using the expression for the wave function (6.31), we also write the

expression for the p, component of the polarization vector of a diffracted

g(r) [° !
— exp | —k Im25+]
Ay ’ { P { 0 2 Yo

l Ayl
+exp [—kolm%f} — 2cos (koRe + )
Yo 2 Yo

MQ

wave:

= ¢+ ” = Iy = 52

X exp {—kolm(eg + €T)l} } - B2
o

l l
X {exp [—kOImQEQW] + exp [—k01m251 %]

A_l l
—2cos koRe> exp [—koIm(€2 + €1+):| } . (6.46)
2 70 Y0

Comparison of (6.33) and (6.46) shows that the longitudinal component
of the polarization vector of the diffracted beam oscillates at the same two
frequencies k1 and ko as the intensity of the diffracted beam does.

Further consider the expressions for the components of the polarization
vector and the intensity of the diffracted wave when absorption can be ig-
nored (the crystal thickness is much smaller than the absorption depth, but
of the order or greater than the spatial precession period; this requirement
can always be met for neutrons as Reg > Img, if only the neutron energy
does not lie in the resonance region). Then equating in (6.33) the exponen-
tial factors to unity, gives the following expressions for the components of
the polarization vector:

1
=232 l9(7)? 0s (kOGl + 6) {COSkORe [G + -
AL AT Yo 4
><(A+—A,)]L—cosk0Re {G-i— (A +A-) l} (6.47)
Yo 8l
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py is obtained from p, by substituting cos (k:OG % + 5) for
—sin (kOG,Yl—O + 6). From this

Da + 1Py = 2p%2 ()" exp {—i (koGl + 5)}
|ALA- | Y0

{cos koRe [G +-(Ay —A_ )} L
7o

l

} | (6.4%)
70
According to (6.47) and (6.48) the longitudinal component of the neutron
polarization vector rotates at the frequency Q = (14 ), H/#A in the plane
xy, i.e., in the plane normal to the magnetic field. In the case of asymmetric
diffraction 8 # 1 the rotation frequency of the neutron polarization vector
Q does not coincide with the Larmour frequency 2u, H/h. Thus, under
diffraction conditions the spin rotation frequency depends not only on the
value of the magnetic field but also on the angle of incidence on the crystal
and the orientation of the crystal surface with respect to crystallographic
axes.

As follows from (6.48) rotation is accompanied by the oscillation of the
magnitude of the longitudinal component of the polarization vector at the
frequencies wy and ws.

With the help of (6.46) and (6.33) we obtain the following expressions for
the longitudinal component of the polarization vector p, and the intensity

—cos koRe [G + - (AJr +A_ )]

of the diffracted wave I; for a thin plate:

p, = 2/3° f(1+) i {1 — cos <k0Re;A+j>]
el TN A |
|2 i on (ranea L)
4232 (_) {1 — cos (kORe;A’YlO)] ; (6.50)

It is clear from (6.49) and (6.50) that density oscillations of the components
of the wave function, which correspond to the states with spin parallel and
antiparallel to the magnetic field will occur at two different frequencies k
and Ka.
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Now we shall consider thoroughly the oscillations of the transverse com-
ponent of the polarization vector. With this aim in view recast (6.48) as
follows:

l
R
Do +ipy = 28 | A_‘exp i kOG’YO + 6

1
x 2 8in (kORe1A> sin {kORe (G + A+) l] . (6.51)
4 Yo 4

Yo

Analyzing expressions (6.49)-(6.51), one may see that the oscillation fre-
quencies of the transverse component p, + ip, of the polarization vector in
the presence of the external magnetic field do not coincide with those of the
longitudinal component of the polarization vector p,. Hence, it is always
possible to select such a value of the magnetic field (at given g(7), I, a and
B) that the transverse component will vanish, while the longitudinal com-
ponent will be non-zero. A coherent neutron beam, initially fully polarized
along the x-axis, under diffraction conditions may become partially or fully
polarized along the z-axis.

How does absorption affect rotation of the neutron polarization vector?
Let a crystal thickness be larger than the absorption depth of a rapidly
damped wave, but smaller than the absorption depth of an anomalously
transmitted wave. In this case p, and p, may be written in the form

= [ lo(r)” s{kORe [G—l(A+—A)} l+5}, (6.52)
AL A 4 Yo
py is obtained by replacing cos with —sin. Write the explicit form of the

spin rotation frequency wy:

wy = hsz {mﬂn (1+8)

h2k2
—f\/g+ B) + Bal? + 4Bg(t)g(—T)
+- ¢ B) + Ba)? +4Bg(7')g(—r)}. (6.53)

Pay attention to the fact that in this case the spin rotation frequency no
longer demonstrates linear dependence on the value of the magnetic field,
which now becomes more complicated, as described by expression (6.53).
The spin phenomena investigated also occur in the case of the symmetric
Laue diffraction, if the field boundary is not parallel to the crystal surface.
Now consider the case when a diffracted wave exits through the same crystal
surface on which the initial beam falls, i.e., consider diffraction reflection
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of neutrons from a non-magnetic crystal placed in a constant homogeneous
magnetic field.

As the set of dynamic equations (6.30) in question is perfectly analo-
gous in form to that describing diffraction in a crystal in the absence of
a magnetic field, we can immediately write down the coefficient of diffrac-
tion reflection for each spin component of the neutron wave [Baryshevsky
(1976)]

Ry = Bg(7)
2
1 —exp [2(52i - eli)ko%}
X " " R (6.54)
2 — 92 (0)] = 225 — g (0)] exp [i(=F — koL
where sli(z) are specified by equality (6.31).
For simplicity, consider the symmetric Bragg case, when 8 = —1. Then,
according to (6.32),
1
oy = 2lot Vg0 — P —dg(n)a(- 7] (6.55)

From (6.54) follows that when the following conditions are fulfilled

2
(a —2g(0) — %H) <4g(m)g(—7);

(a ~ 29(0) + 4;’;:%" H) > dg(r)g(—7) (6.56)

the reflection coeflicient Ry = 1, while R_ > 1. And vice versa, if the
conditions

(o= 2010) - Gt17) > dg(rha(—n):
(a —2g(0) + 4;;]’:8" H) < 4g(r)g(—7) (6.57)

are satisfied, then R_ =1, and R4 <« 1.

The phenomena considered above also occur in a wave passing through

a crystal in the incident direction of the initial (primary) beam. Outside

the diffraction conditions the intensity of the diffracted wave diminishes

rapidly. At the same time the refractive index of the wave propagating

in the initial direction contains the admixture owing to the existence of
diffraction, for example,

e = Lo o)+ By(r)g(=7)
2 2(Ba+g,(0)(1 = B))

+ .. (6.58)
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Therefore even away from diffraction, the neutron spin rotates at the fre-
quency different from the Larmour one. The contribution to the refractive
index of a particle (y-quantum) passing through a crystal due to the sum-
mand of the type as considered in (6.58) affects the optical anisotropy of
crystals in a hard spectrum, and depends, in particular, on variable fields
acting on the crystal. (Under the diffraction conditions these fields consid-
erably modify £{,, [Baryshevsky (1979a)]).
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Chapter 7

Interference of Independently
Generated Beams of «-quanta

7.1 Interference of Independently Generated Photons

The interference phenomena in beams of light generated by independently
emitting sources have been widely debated in literature. The study of such
phenomena in the X-ray band would make it possible to carry out direct
measurements of the phases of scattering amplitudes and structure ampli-
tudes in crystals. However, as shown in [Baryshevskii and Podgoretskii
(1968)] it is impossible to perform such measurements with conventional
sources of X-ray and ~ radiation. Nevertheless, according to [Baryshevsky
and Feranchuk (1980a)], high intensity and pointed directivity of radiation
produced be relativistic particles in crystals give hope for experimental de-
tection of the interference phenomenon of independently generated beams
of y-quanta.

In the beginning consider the nature of the phenomenon. Let us have
two excited atoms with energies E, and FEj located at points 7, and 7%,
and two atoms (two elementary (simple) counters) located at points 7. and
74. One and the same final state of the system (photon registration by the
counters at specified instants of time ¢ and 7), due to the identity of incident
particles, is achieved by two possible ways: (a — ¢, b — d) and (b — ¢,
a — d). Observation cannot distinguish these two regimes. Therefore the
probability P,y (7., t; 7q, 7) that at time ¢ radiation will interact with the
atom located at point 7., and at time 7, with the atom located at point 7y,

135
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contains the interference term and can be represented in the form

expli(karac — Wat + 0a)]
Tac
" expli(kpryg — wpT + 0p)] n expli(kaTad — WaT + 4)]
Tbd Tad
o expli(kproe — wpt + 0p)] ‘2

Pab(Fc7t;Fd,7?):A

1
Tbe ’ (7 )

where A is the constant insignificant for the case in question.

The expression of the type 7,1 expli(kaTac — wat + 84)] is the wave
function of a photon with the wave number k, = w,/c, which is emitted
at point 7., where r,. = |Fy — 7|. For simplicity, it is assumed that the
atoms emit monochromatic radiation of the same polarization. According
to (7.1), the probability P, (7., t; 74, 7) is independent of random phases
04 and d,. If the distance between the atoms of either pair is assumed to
be much shorter than the distance R between the pairs, then (7.1) can be
written in the form

—

2A
Pab(Fc , 1 Fd, ’7') ~ ﬁ {1 —+ cos [ka('r'ac - Tad)
+kb(7'bd - Tbc) - (wa - Wb)(t - T)]} y (72)

where rq. = |Fy, — 7| etc. But for the particle identity, the first term in the
braces in (7.2) would describe the probability of joint registration of the two
photons; the second term describes the change of this probability due to the
identity. As one may see, taking into account the particle identity, leads
to the fact that the probability P, (7, ¢;74,7) is the oscillating function
of the coordinates that undergoes time beatings at the difference of the
frequencies of the emitted photons. Since real sources and detectors contain
many pairs of atoms, (7.2) should be summed over these pairs. In this case,
the interference term, which is of interest to us, does not vanish unless
the cosine appearing in (7.2) undergoes oscillations with the change in the
positions of atoms within the volumes of the sources S and detectors D.
Hence, the following inequality should hold for any pair of atoms within
the limits of S and D

ka(rac — Tad) + kb(""bd — Tbc) < 1. (73)

The condition (7.3) under which the interference of independent beams
does not disappear, may as well be written as follows

Vs¥p < A\/R, (7.4)
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lslp < AR, (7.5)
where Yg(py = lg(p)/R is the angle at which the source (detector) with
the lateral dimension I4({;) is visible from the detector (source) located at
a distance R from S(D); A is the radiation (emission) wave length (it is
supposed that AN/X < 1).

If inequalities (7.3)—(7.5) are fulfilled, and ¢ = 7 (simultaneous registra-
tion of coincidences), then the second term in (7.2) equals the first term.
Consequently, the coincidence count probability for identical particles is
different from the result obtained by classical count by not more than a
factor of two. From this also follows that the possibility to observe the
interference is determined by the possibility to register coincidences in the
classical situation. If the intensity of the sources is such that random co-
incidences of particles without reference to the identity occur in the given
experiment, the interference phenomena are observed.

Since the number of coincidences obtained during the time 7' fluctu-
ates, the intensity of the sources and the time T should be such that
the average number of coincidences (N) during the stated time would be
greater than the magnitude of fluctuations in the number of coincidences
SN = /(N2) — (N)2 ~ \/(N) ~ v/ninar.T (n1(n2) is the number of par-
ticles registered by counter 1(2) per unit time; 7. is the resolution time of
the coincidence circuit).! Hence, the inequality

% ~ \/ningt T > 1
should hold. If p is the surface intensity of the source and 7 is the efficiency
of the counters, then ny» ~ pl%(l1%/R?*)n. When the condition (7.5) is
fulfilled, we obtain n1 > < pA?n. Thus, finally we have

(N)/6N =~ npA2\/7.T > 1, (7.6)
which coincides with the expression in [Goldberger and Watson (1965)] for
the case when the length of the train of the incident waves is comparable
with the time 7.

Expressions (7.1), (7.2) are derived under the assumption that the atoms
of the source are fixed and undisturbed. However, generally speaking, in
real conditions it is not the case. Thermal motion and collisions of atoms
in a source leads to the frequency modulation of the emitted photons. In
this general case, the photon wave function may be represented as follows:

U, (t) ~ exp{—ilwat + Q. (1)}, (7.7)

1To be more specific, consider the case of small counting rate of the coincidence cir-
cuit. Otherwise, we may talk of the correlation function rather than of the number of
coincidences.




138 Channeling, Radiation and Reactions in Crystals under High Energy

where Q,(t) is the phase change of the photon due to thermal motion and
collisions of the emitting atom a.

If the dimensions of the sources and detectors satisfy inequalities (7.3)—
(7.5), then using the wave functions of the type (7.7), one can write the
following expression for the probability P, (7., t; 7y, 7) averaged over the
states of atoms a and b in the source:

Pp(7, t; g, 7) = const (| exp {—iwat + Qa(t)]}
x exp {—i[wpT + Qp(7)]} + exp {—i[waT + Qa(7)]}
s« exp {—ilint + (O]} 2. (75)

here angle brackets mean averaging.
Equality (7.8) includes the quantity

Gav(t, 7) = (exp {=i[Q(t) — Qa(7) + U(7) — L (D)]})

characterizing the kinetic processes in the source. As is seen from (7.8),
when studying photon correlations, the probability of registration of delayed
coincidences by two counters only depends on mutual correlations between
atoms a and b. If we measured triple or higher fold coincidence events,
the corresponding probabilities would only depend on mutual correlations
between three and more atoms. This is slightly different from the situation
arising in studying correlations in the radiation scattered by a certain target
for the case when the energy spectrum of the scattered radiation being
measured depends also on time correlations of the state of one atom. For
simplicity, let us further assume that the correlations between atoms a and
b may be neglected (for example, investigating the radiation of a gaseous
source). Then

Gap(t,7) = Go(t, 7)Gy (t,7),
Gaw)(t,7) = (exp { =i[Qa()(t) = Qa,)(7)]}) -

For homogeneous systems, G,(t,7) = Gy(t,7) = G(t, 7).
In most cases of practical interest G(¢,7) may be represented as follows:

G(t—7) :exp{wa(th)/él} , (7.9)
where w?(t — 7)/2 = ([Qu(t) — Qu(7)]?).
Using (7.9), from (7.8) we obtain the equality
Pay(t — ) = const {1+ exp {—Re[w?(t — 7)]/2}
X cos[(wg — wp)(t—7)]} . (7.10)
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Sum (7.10) over all the pairs of atoms in the source? and the detector,
assuming that the source emits with equal probability the photons of only
two frequencies wy and ws. As a result, we obtain the below expression for
probability P(t — 7) that one photon will be registered at moment ¢, and
the other one, at moment 7:

P(t — 1) = const {1 + exp [—

x cos? [“’12”2(75 - T)} } . (7.11)

Thus, the curve of delayed coincidences undergoes modulated beatings,
depending on the the delay time § = |t — 7| at the frequency equal to
the difference of frequencies w; and ws. The frequency of beatings can,

Rew2(2t - ’7'):|

in principle, be controlled by means of various external influences, e.g., by
placing the source to the external magnetic field.

Now determine the total number of coincidences N in the given experi-
ment, i.e., determine the area under the curve of delayed coincidences if the
maximum delay time used in the experiment is 6,,. For this we integrate
(7.11) over @ = t — 7 within the interval [0, 0,,], which gives the expression
of the form

O

2 _
N = const < 0,, + /exp [_Reu;w)} cos? [wl2w29} do
0

(7.12)

The first term proportional to 6, would correspond to the number of
coincidences if the photons could be distinguished; the second one gives the
addition to N, appearing due to the particle identity. Hence, taking into ac-
count the identity leads to the fact that the area under the curve of delayed
coincidences is not proportional to 6,,, as it would be for distinguishable
particles.

Consider (7.12) for two limiting cases: in the first one the perfect gas
with temperature @) acts as a source, in the second one the source is such
that the major role in modulating the radiation frequency is played by
collisions, whose influence will be taken into account in the collision ap-
proximation. In the former case, Re[w?(f)] = k*v26%, in the latter case
Re[w?(A)] = 4pV5200; here 7% is the mean square thermal velocity of
atoms, p is the atomic density in the gas, and o is the collision cross section.

2Such summation can be made if the photon density in the source is such that the
simulated emission of atoms can be neglected.
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Substitution of the stated expression for w?(f) into (7.12) gives the
following expressions for the two cases:

0,
272
N = const Gm—i—/exp— (—k21)92>
0
X cos? [“’1;“’29] de} : (7.13)

1 r
N' = 63 0 + —
cons { o (e — w2 1 17
_exp(=T0n) - al cos[(wy — wa)bpm + @]
2 (w1 — OJQ)2 + F2 ’
where ae’? = T +i(w; —ws); I' = 2pV/220 is the impact width of the level®.
If 0,,(%k*)/2 > 1 and T6,, > 1, (7.13) and (7.14) may be recast as

follows
. ™
N ~ const Gm 1+ W
/ s (wl — UJ2)2

Az const B, ¢ 14+ — - + ! P2 (7.16)
- " o0, 200, (w1 —w)2+T2 [~ '

Thus, the area under the delayed-coincidence curve depends on the dif-
ference wy; — w9 and on the mechanism of the radiation frequency modula-
tion. When w; = we, expressions (7.15) and (7.16) differ from the result
obtained for classical particles by the magnitudes 2+/7 /0262 k2 and 1/T°0,,,
respectively. If (w; —w2)?/92k? > 1 or |wy —ws| > T, the number of coinci-
dences exceeds the classical result by /7 /92602, k? and 1/2T°6,,, respectively.
This means that when the stated inequalities are fulfilled, the photons of
frequency wy and photons of frequency wy may be considered non-identical.
At the same time, the photons of the same frequency (either w; or ws),
of course remain identical to one another, which is manifested in the fact
that the magnitudes of N and N’ differ from those predicted for classical
particles.

Let us note in conclusion that it would be tempting to carry out such

(7.14)

experiments not only for optical photons but also for, e.g., Mossbauer -
quanta. However, due to the short wavelength of y-quanta, it is practically

3When the impact and the Doppler width of the level can be neglected, (7.14), where I'
is the natural width of the level, holds true for the area of the delayed coincidence curve.
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impossible nowadays to realize the conditions (7.5) and (7.6) using conven-
tional sources.

Indeed, from (7.5) we obtain that if for light at A ~ 107 cm and lg ~
Ip ~ 10~ cm, it should be R > 103 cm, then for y-quanta (A ~ 108 c¢m)
at the same dimensions of the source and the detector, it should be R > 10°
cm.

A more detailed treatment shows that this problem might be avoided,
using some artificial procedures. But even stricter requirements are imposed
by inequality (7.6). From it follows that with other conditions being equal,
the observation time T’, in the X-ray spectrum should be by several orders of
magnitude greater than the corresponding time T, in the optical spectrum
(Ty =~ (A\e/A) T, ie., T, =~ 10'2T,). The aforesaid also refers to the case
when a scattering target is placed between the sources and detectors, as it
may be treated just as a source of scattered waves. Serious problems also
exist for other types of radiation (electrons and neutrons).

7.2 Interference of v-quanta Generated by the Beams of
Relativistic Particles

Quite a different situation arises when radiation produced by relativistic
particles is used as a source[Baryshevsky and Feranchuk (1980a)]. There
are two possible kinds of experiment: (a) radiation is produced when a
relativistic particle passes through a crystal, (b) synchrotron radiation is
diffracted in the Mossbauer crystal.

Recall (see(3.3) that radiation is a crystal is formed through two mech-
anisms: parametric one, and radiative transitions between the levels (re-
gions) of transverse motion. The emerging y-quanta move within a narrow
angle along the direction of the particle motion and along the direction
determined by the reciprocal lattice vector 2n7. The number of resonance
y-quanta, produced by one electron in a crystal, due to the parametric

effect, for the forward direction equals (h =c=1)
r
N{ =e*—, (7.17)
Wp

for radiation in the direction of diffraction

; 960 (wp) r m
N’(Y ) = 62 % g(’)’o(wp)%; ﬁ < |900(wp)|7 (718)

where A = goog11 — go1910-
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Angular divergence of the quanta produced (see (4.7)) for the forward
direction has the magnitude of the order of

m 2
00 <\[(%) "+ lgool- (7.19)

Angular divergence of the photons emitted along the direction of diffraction
is much less

0" < /A (7.20)

In the case in question the linear dimensions of the source are defined
by the width d of the electron beam incident on the crystal (Ig = d).
Linear dimensions of the input window of the detector, where the photons
produced by the particle get equal

Ip =d+ RO, (7.21)
As a result, the condition (7.5) may be written in the form
d? + dROT) < AR. (7.22)

In observation of the interference phenomena in radiation propagating along
the direction of particle motion, the condition (7.22) is difficult to fulfil. For
example, for a crystal of ®” Fe and the electron energy E ~ 1 GeV, the width
of the electron beam should be less than 107% cm. At the same time, due
to the fact that (") <« (), when observing interference in the direction of
diffraction under the same conditions d ~ 0.1 cm.

Further we shall consider the possibility of observation of interference in
the direction of diffraction, assuming that the condition (7.22) is fulfilled.
Let the resolution time of the coincidence circuit 7. is less than the length
of the train of the obtained ~-quantum, i.e., of the order of magnitude
7. < 1/T. Taking into account that the number of particles passing through
a crystal in one second is I/e (I is the current strength), we have for the
number of quanta produced in the crystal in one second:

1

EN@. (7.23)

n =

Due to a small angular divergence of the radiation produced in the crystal,
all the photons get into the detector. Therefore when the condition (7.22)
is fulfilled using the parametric effect, we find the following estimate for
the observation time of the interference pattern 7'

277 2] A|

T> ————.
7L (gf )P 122

(7.24)



Interference of Independently Generated Beams of y-quanta 143

When I = 10uA = 107°A, n ~ 1, E = 1 GeV, from (7.24) follows the
estimate T' > 10* s for 5" Fe: T > 10% s for 137V,

Now consider the possibility of observation of the independently gener-
ated photons, using diffraction of synchrotron radiation in a crystal con-
taining resonance nuclei. Applying the conditions (7.5), (7.6) and the ex-
pression for the intensity of the synchrotron radiation (see, for instance,
[Feranchuk (1979a)]), one may obtain the expression for the observation
time

~ 16m2e* I'n2’

(7.25)

where S is the area of the electron beam cross section; n. is the number of
electrons in the accelerator. When S = 10~3cm, r = 103 c¢m, n, = 10'? (or
I =0.1A4), the estimate is T' > 103 s.

The stated time may be appreciably reduced (T' ~ 1 s), using radia-
tion of the powerful storage rings like those discussed in [Kapitsa (1979)],
which are to be constructed. Such times are also achieved with the help of
the parametric effect at the electron current of the order of 10* A. The
phenomena being analyzed may be applied for direct phase analysis by in-
troducing Méssbauer nuclei into the structure in question. If this method
is hampered, the Mossbauer crystal may be used as the source of radiation,
which is subsequently diffracted by the examined substance.
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Chapter 8

Theory of Measurement of Nuclear
Reaction Times Using Shadow Effect.
Yield of Reactions Induced by
High-energy Particles in Crystals

8.1 Quantum Theory of Reactions Induced by Channeled
Particles

Particle motion in a single crystal is accompanied by numerous inelastic
processes and reactions. The investigation of these processes and reactions
provides important information about crystal structure and the properties
of nuclei. In particular, the shadow effect is widely used to explore the
nuclear reaction times 7 in the range 7 < 10716 s [Karamyan et al. (1973)].
When interpreting the results obtained, it is supposed that what is mea-
sured in the experiments under discussion is the nucleus lifetime.

Although, analyzing the fluctuations of effective cross sections of re-
actions, Lyuboshitz and Podgoretky [Lyubosihtz and Podgoretskii (1976);
Lyubosihtz (1978a,b)] showed that in strong overlap of the levels the law
of the compound nucleus decay becomes appreciably nonexponential. It
was also stated that in this case the process of inelastic scattering can be
divided into instantaneous diffraction scattering and fluctuation scattering,
associated with the decay of the compound systems.

According to [Lyubosihtz and Podgoretskii (1976); Lyubosihtz
(1978a,b)] the characteristic time duration of the fluctuating part of the
reaction is determined by the mean interlevel distance rather than by the
level width of a compound nucleus. (The whole analysis in [Lyubosihtz
and Podgoretskii (1976); Lyubosihtz (1978a,b)] was carried out by using
packets.)

Within the framework of a stationary quantum mechanical theory of
scattering, we have demonstrated that, by applying monochromatic states,
it is also possible to define the nuclear decay law [Baryshevsky and Tkacheva
(1978); Baryshevsky (1979b)]. Moreover, angular distribution of secondary
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particles, studied in the experiments on shadow effect [Karamyan et al.
(1973)] turned out to be determined by the correlation function of the re-
action amplitudes, which in the case of strong overlap of the levels coincides
with the function introduced in [Lyubosihtz and Podgoretskii (1976); Lyu-
bosihtz (1978a,b)].

In this regard it is worthy of mention that the possibility of using the
formulae employed in the experiments on the shadow effect for establishing
the relationship between the angular distribution of secondary particles and
the law of the compound nucleus decay in the case under consideration re-
quires additional analysis. This circumstance is attributed to the fact that
until now the theory describing the method for measuring nuclear reaction
times has been practically completely based on using classical models in-
volving a number of uncertain parameters (variables) (such as the chain
cutoff radius; for more details, see [Karamyan et al. (1973)]). Whereas an
essential element of quantum consideration of the effect given in [Yazaki
and Yoshida (1974)] is the assumption that the motion of finite particles is
classical.

Below is presented a quantum mechanical theory of scattering which en-
ables deriving formulae relating the angular distribution of particles - the
reaction products - to the position distribution function of the compound
nucleus without using under-substantiated model approximations. It is also
shown that in excitation of a group of levels, the position distribution func-
tion of the compound nucleus undergoes spatial beating with the period
determined by the interlevel distance. This enables using shadow effect
for investigation not only the level width but also the interlevel distance.
Applicability to the shadow effect of the hypothesis of the rapidly estab-
lished statistical equilibrium in the transverse plane of the phase space of
the particle leaving the crystal, widely used within the framework of the
classical approach is validated [Karamyan et al. (1973)]. Using the formal
theory of reactions makes it possible to directly apply the obtained results
to electron-nuclear reactions induced by relativistic particles (e.g. electrons
and positrons) too, if by the particle mass we mean its relativistic mass.

So, let a particle a be incident on a crystal, causing a nuclear reaction
A(a,b) in it. Consider the angular distribution of particles b. According to
the general theory of reactions (see, for example, [Goldberger and Watson
(1984(@)]) the cross section of this process may be written in the form:
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dogy — mamy
aQ,  (27h?)2k,
3 [ b (Bus - B 1FEDE . )

where m, ) is the mass of the particle a(b); k) is the wave number of
particle a(b); E,4 is the energy of the initial state; E,p is the energy of
the final state; F is the scattering operator; o) is the wave function of
the initial state taking account of the interaction of particles a and A with
the crystal, having at infinity the asymptotics which contains diverging
waves; ¢(7) is the same for the final state with the asymptotics containing
converging waves.

The shadow effect is applied to investigation of the duration time of
nuclear reaction 7 < 10716 s [Karamyan et al. (1973)]. As in this case the
width of nuclear levels which are involved in the reaction (and the energy
of particles) is much greater than the characteristic vibration frequencies of
nuclei in the crystal, in order to find the operator F, the impulse approx-
imation may be used. According to this approximation [Goldberger and
Watson (1984(@)], it it is assumed that F coincides with the scattering
operator describing the reaction A(a,b)B with free particles, i.e., particles
that do not interact with the crystal:

(v, k| Flka, k)
= (21)%0(ky + kp — ko — ka) (K, kB|T|ka, ka) (8.2)
where the amplitude (ky, k|7 |kq, ka) = Tya(Ks, K, €) depends of the

relative momenta of the initial (£) and final (£;) states , and the energy ¢ =
h%k? /2u of the relative motion in the initial state (1 = moMa/(mg + Ma)
is the reduced mass in the initial state). As a result, (8.1) may be written
as follows

doap MaMp / / 37 1310 1310
= keyd Eyd3kpd3 k) d3 K,
dQ,  (27h2)2(2m) 2k, pETLE BT

X d3kA5(EbB_EaA)|< b |k‘b> (kb—FkB—k';—k‘A)

x (Kp, Kp|T|K,, ka) (K, |¢<*>><EA|<I>A>|2, (8.3)

where \<p > is the wave function of particle a incident on the crystal; |<pﬂ >

is the wave function of outcoming particle b; |®4) is the wave functlon of
the nucleus.
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Further we shall consider quite thin crystals so that we could neglect
energy losses of particles a and b participating in the reaction (according to
[Kagan and Kononets (1973)] for protons with the energies E = 0.4 MeV
in Si, the thickness is [ ~ 5 — 7 x 10% A, for o particles with the energies
E =2 MeV in Au, the thickness is [ ~ 3 x 103 A). In this case the wave
functions describing the phenomenon of channeling of particles incident on
the crystal and leaving it may be found, using the method presented in ().
For example, inside the crystal the wave function may be given as

(+) Z CnE nikq (p_j EXP(ZkaznZ)

2

Cnk, = (2;;0) / exp(ika 1 p) Uiz, (5)d*p, (8.4)
S

where the z-axis of the coordinate system is directed parallel to the family

of axes (planes) along which the particle is channeled; ¥,z (p) is the Bloch

function; the coordinate p' = (z, gi), n is the index of the energy zone of

the particle’s transverse motion; k., is the component of vector k, per-
pendicular to the z-axis; K, is the reduced wave vector, corresponding to
EaJ_;

2mg
kazn = \/kg - ;;j En('kﬂa);

en(Rq) is the energy of the transverse motion of the particle in zone n;
Qq is the volume of the two—dimensional unit cell of the crystal in plane
p. Integration with respect to d?p’ is performed over the two-dimensional
unit cell in plane p.

The state (7 is found, using the relation <p (") = <p z (F) From

(+)(

the form of the wave functions ¢.. R, )) follows that the matrix elements

(k:’ |g0(+)> and (p % )|kl’,> make the mtermediate momenta k& and kz/) close to
b

k, and kb with the accuracy of the order of 1/1 for kfll\ and kl’)l\ (I is the
crystal thickness, the symbol || denotes the components of the momentum
parallel to the axis (plane) along which the particle is channeled), which
is much smaller than k9?1, where ¥, is the Lindhard angle. The uncer-
tainty of momentum k4 is of the order of 1/rqg, where rq is the vibration
amplitude of the nucleus.

Pay attention to the fact that the reaction amplitude T}, can be pre-
sented in the form

- I Y6 (Rp)Yra (R
Tvo(Ry,Rye) =Tp(Ry,Rye) + Z o0s) E g}\ _:(12;)\ , (8.5)
2
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where Tp is the amplitude of the direct reaction; v p(yrq) in the general
case, are complex quantities, which, at weak overlap of the levels, coincide
with partial widths for the transitions A — b, A — a; E) is the energy
of the resonance A; I'y is its width. The dependence of Tp and Y.
on the momenta is determined by the spatial domain of the order of the
nuclear dimension in size. For this reason, the momentum uncertainty of
the incident and outcoming particles, which is caused by their interaction
with the crystal (< 10'%cm™?), can be ignored in Tp and yyap). As a
consequence, Ky and K in them may be equated to the vacuum values of
the momentum of particles (b — k) and (a — kq), respectively.

Note also that in integration with respect to the component of the rel-
ative momentum, which is parallel to the incident direction of the primary
particle, the contribution from the resonant denominator in (8.5) will be
determined by the residues at points

As the transverse relative momentum

MA = mg

k- k
Mg + Mg al Mg + Mg at

Kl =

is limited by the matrix elements, the contribution of x; to the real part
of the pole appears to be small and should be ignored.

Thus, one may consider that in integration with respect to the inter-
mediate momentum, the amplitude T3, depends only on the component of
the relative momentum x| that is parallel to the momentum of the incident
particle:

- MA / mgq
R = ko —
me + MA Mg + MA

a -
As a result, we obtain the following expression for the differential cross
section:

dO’ab
dSdy

=D [ dnlel) ()PQG). (5.6)
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where the constant
27rmamb

(2#52 )2k,

Q) ’/drA“{ dﬁs” Tba(’f\l)

Mg + M
xexp[ 7m Alﬁ:”(?“bH —TA|)]}

(+) Mg + Ma My
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2
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Expression (8.6) should be averaged over the coordinates of the equilib-
rium positions of the excited nuclei R}, which are assumed to be uniformly
distributed over the crystal volume. Upon such averaging equality (8.6)
may be written as follows

dO'ab

0 = D/dgrbn,;b(ﬁ)@(ﬁ), (8.7)

) = Zn;gaf(FbJ_)q)?A(FbL)
mg + M
dT’AH {/dlﬂ?|ATba(I€|)

M
X exp —Z'ima+ AH:H(Tb” —TA”)
Mg

2
, (8.8)

) My
X exp <—zk|afmrA|> Da(ray)

where

- Z |C";;b|2wm€b (™), (8.9)

ng 1 (For) = leg Plpe, (7)1, (8.10)

ng, (7) only depends on the components of vectors 7, and Eb perpendicular
to the direction of the axes (planes) along which particle b is channeled
and has the meaning of density distribution of particles b in the transverse
plane relative to the stated axes (planes); nj (7%.) only depends on the
projection of vector 7, which is perpendicular to the direction of the axes
along which the incident particle a moves and has the meaning of density
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distribution of particles a occupying the transverse energy level f in the
plane perpendicular to the channeling axes (planes).

Discuss the derived expression in more detail. The quantity dog,/dS
determines up to a constant the angular distribution of the flow J of par-
ticles b produced through the reaction. On the other hand, the flow J can
be found by solving the Schrodinger equation of the form

(Ar + 5 —u(@)v() = q(7), (8.11)
where ¢(7) is the current distribution amplitude of the source of particles;
2m
u(r) = ﬁv(ﬁ )

V(7) is the potential in which the emitted particle moves.
The solution of (8.11) has the form

Y(F) = / g7 d3r (8.12)

where G(7,7') is the Green function of (8.11).
According to [Baryshevsky (1976)], in moving in an arbitrary potential

lim G(F,7) = 1 eXp(Zk’")w (7). (8.13)
r—00 47T
As a result,
__iexp(ikr)/ (=)* 21N =\ 33,1
W(F) = o v (™q(F"dr". (8.14)

From (8.12) follows that the flow of particles produced by the source is:

[l e

Let us average (8.15) over the distribution of currents in the source and
assume that the source is spatially incoherent, i.e.,

(@™ )al7")) = QUG — 7).

const 2y o ?
7= o] @

Comparison of (8.16) with (8.6) and (8.7) gives that Q(7}) has a meaning
of distribution density of the emitting points of the source, which in our
case are the nuclei produced via coalescence of particles a and A.

2
const
J =

(8.15)

As a consequence,

7d3r' . (8.16)
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Note that the quantity ng () that appeared upon averaging of the
cross-section over the positions of nucleus A is, in fact, the diagonal ele-
ment of the density matrix of particles b, which determines their distribu-
tion in the transverse plane of the channel. In terms of classical theory, this
means that the angular distribution of the emitted particles is defined by
the statistical equilibrium density in the phase space of the transverse par-
ticle motion (in [Ryabov (1975)] direct calculation showed that within the
classical limit, the density ng, (7) coincides with the classical equilibrium
density). Thus, the assumption about the fast established statistical equi-
librium in the transverse plane of the phase space, regarded as a hypothesis
in the classical derivation of angular distributions, is quite substantiated
from the quantum viewpoint.

Substitute expression (8.5) for the reaction amplitude into formula (8.8)
defining the distribution of the emitting points Q(Fb):

TD exp <ika|fmrb|>
ma

Q) =Y g (7o) ®% (Fou)
f

2M AvxbYA
X@A TbH —’Lﬂ'z hQK/\ a

. Mg + My
x /exp {—Z(m — iKY 1y = T 4]
Mg
2

, (8.17)

o Ma
_zkaflmrAl] Qa(ra))draj

_ 2M F)\ o
= h2 A= Ry 1Ky -

According to 8 17), the distribution of the emitting point is formed by
the superposition of damped waves and stretches in the incident direction
of the primary particle (integration in (8.17) is, in fact performed over all
ra) < Ty); at 74 > 1) the integrand oscillates extremely rapidly and the
stated domain of integration can be discarded).

As would be expected, the rate of wave damping is determined by the
lifetime of the compound nucleus at level A and by its velocity. Indeed, the
index of power of the damped exponent is:

5_k//ma+MA _1 H F)\ma+MA .
Mg 2 h2K) Mg
Integration over dr 4 leads to the fact that

where

/
K/)\ = kal‘i
a
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with the accuracy up to the momentum associated with the thermal vibra-
tions of nucleus A in the lattice. Hence, one can write

1T mg+ Ma 11
=" i.e. = =
2 h hka” ’ ’ 2’[)07')\’
where
1 Ty
TX o h
and
_ kg
°c Mg + Mg

is the velocity of the compound nucleus.

Note that according to (8.17), the interference of the direct and res-
onance scattering channels has an appreciable influence on the shape of
Q(Fb) at short lifetimes of the compound nucleus, when the magnitude of
its spatial displacement is of the order of the vibration amplitude of the nu-
cleus in a crystal. In this case, the first and second terms in (8.17) overlap
most strongly, causing a significant deviation from a conventionally used

exponential distribution law even when only one level is excited

S/ Tp| —TA
Qi) ~ oxp (-
VeT
If a group of levels is excited, the superposition of waves A entering into
(8.17) brings about spatial oscillations of the distribution Q(7%). The os-
cillation period [y is defined by the energy difference of the excited reso-
nances:

l)\,\/ = 27T’Uch/E>\ — E)\/ .

Thus, the shadow effect is applicable for determining the lifetime of a
compound nucleus and the distance between the levels (at Ey — Ey > Ty,
I')/) even in the case when a monochromatic particle beam is incident on
the crystal. Note that the quantity AE ~ hv./ro acts as effective non-
monochromaticity, rg is the vibration amplitude of the nuclei in the lattice.

Now assume that a certain group of resonance levels is excited by a
beam of particles which have the energy spread considerably exceeding the
maximum distance between these levels. Then the cross-section, and hence,
(8.17) should be averaged over the stated spread, which comes to integration
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of (8.17) with respect to k|, As a result, (8.17) simplifies, taking the form

an f Tbl (I)2 {|TD| (I)A(Tbl\)

_47T Ma |22MA’7Ab%\a
Al M, 1P 2Kl

213 my, /rb”
+77
Ak” My o

. 1 7 2
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x®% (ra)dray} , (8.18)
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where Tp = |Tp|exp(idp); Ak is the domain of averaging. The oscillations
appearing in (8.18) are the time—to—space conversion of a well-known phe-
nomenon of time oscillations in the radiation intensity, which arise through
level excitation by a non-monochromatic packet. In the experiments on the
shadow effect they permit studying not only the lifetime of the levels but
also the distance between them.

If a large number of neighboring levels are excited in the reaction, in
practice to explicitly find the sums involved in (8.18) is a complicated task.
However, if assumed that the level are randomly distributed over the excita-
tion region, the expression for Q(Fb) may be derived by averaging (8.8) over
the distribution of these levels (according to [Lyubosihtz and Podgoretskii
(1976); Lyubosihtz (1978a,b)], averaging of the cross-section over the en-
ergy spread in the beam and over the level distribution leads to one and
the same result). As a consequence, the average value of (Ty, (k) )Tba(K))
will enter into the reaction cross section in (8.7).

Suppose that the levels are statistically independent, as well as the en-
ergy spread in the beam is much greater than the average interlevel distance
and the width of the levels, but it does not exceed the interval over which the
levels are concentrated. In this case the average value of (Ty, (1)1 ba(/ﬁlH )) is
the function of the difference of its arguments [Lyubosihtz and Podgoretskii
(1976); Lyubosihtz (1978a,b)]:

(Tya (5)) Tha(K))) = gy — &) - (8.19)

Note that in [Lyubosihtz and Podgoretskii (1976); Lyubosihtz (1978a,b)]
the amplitude correlation function is presented as the function of energies,
rather than the function of the wave numbers of relative motion. Integration
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in (8.7) and (8.8) with respect to x| and x| gives

dO’ab o
d,

(21)2D / Pring (7)(Q)) (8.20)
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When the crystal is illuminated by particles under the conditions when
channeling phenomenon for them is absent, the density ng. (7.1) is inde-
pendent of the coordinate, being a constant. If the time in the delay-time
distribution function, obtained in [Lyubosihtz and Podgoretskii (1976);
Lyubosihtz (1978a,b)] is expressed in terms of the travel distance, i.e.
t = (1| — ra))/ve, then the stated function coincides with the function
Gba(Tp| — T4 ), appearing in (8.21). From this follows that

Tyl —TA
Gba (o) — TA|) = Gba <||) .

Ve

Recall now that the density ng, (7) only depends on the component p of
vector 7y, which lies in the plane perpendicular to the axes (planes) along
which particle b is channeled. Therefore, if we introduce the coordinate
system with the z-, y-axes lying in this plane, (8.20) may be written as
follows:

dO’ab -5

k= @n7D [ &g, () @) (824

where (Q(p)) = [ dz(Q(pp)) describes the distribution of the emitting
points in the transverse plane py. o

The integral in (8.24) only by the specific expression (Q(pp)) differs
from the integral, determining averaged over the crystal thickness yield of
nuclear reaction (Eb 1) which is excited upon entering the crystal of particle
b with the momentum Eb 1 transverse with respect to the axes along which
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the identical (akin) particle emitted by a nucleus is channeled (see, for
example, [[Kagan and Kononets (1973)], formula (4.12)], where the quantity
I(kp,) includes the squared absolute value of the wave function of the

excited nucleus instead of (Q(pp))). In the case when nuclear reaction times
are too short for the compound nucleus to get displaced over the distance

larger than the vibration amplitude rq of particle A, the quantity (Q(pp)) is
”smeared” over the region with spatial dimensions of the order of ry. As a
consequence, the angular distribution of the number of particles which have
left the crystal coincide in form with the angular dependence of the yield
I(kpy) of nuclear reactions. According to [Kagan and Kononets (1973)],
the distribution of I(ky, ) is minimal for entrance angles close to zero and
grows with the entrance angles approaching the Lindhard angle, forming
a breastwork due to the contribution from the over-barrier states. With
further increase in the entrance angle it drops, approaching the magnitude
characteristic of a disordered medium. Hence, the angular distribution of
the particles leaving the crystal will also be the same as described above,
which agrees with the experimentally observed pattern [Karamyan et al.
(1973)].

With the increase in the reaction time, the function (5(;;)) becomes
more and more smeared and the shadow depth decreases (with the increase
in the vibration amplitude of the nuclei, the depth of the minimum in the
nuclear reaction yield I (k. ) diminishes [Kagan and Kononets (1973)]).

Thus, the expressions derived above in the general case solve the prob-
lem of the relationship between the angular distributions of the particles
which have left the crystal and the function g, .

Expression (8.24) may be further particularized by substituting a qua-
siclassical expression for the particle distribution density ng (pp). Tt should
be pointed out here that though the motion of a heavy particle or, for
example, a relativistic positron is quasiclassical, in analyzing the reaction
yield (the intensity of the particles produced), one should use quantum
mechanical expressions (8.24) rather than classical formulas. This can be
explained by fact that the function Q(p) is generally nonzero in a classi-
cally inaccessible for positively charged particles range of the potential of
particle interaction with the plane (or axis). It immediately follows from
the representation form of (8.24) that the reaction yield depends on the
sign of the particle charge. In the case of positrons, the maximum of the
density nj (p») does not coincide with that of function Q(py)(|®a(ps)[?).
For electrons, the overlap of functions ng(p) and Q(p)(|®4(p)[?) is most
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complete. As a consequence, in the case of electrons, the integral of the
form (8.24) is maximal, i.e., the yield of nuclear reactions is maximal.
Now discuss in more detail the features of the electron and positron
distribution over the levels. With this aim in view, pay attention to the
fact that in the quasi-classical limit, passing from summation to integration
over the entering points and vice versa allows giving a simple geometric
interpretation of the particle distribution over the levels. Indeed, consider
the distribution of incident particles in a unit cell. In the planar case this
is the distribution over the domain of length a. The probability to find a

particle within the interval dz of this domain is dz/a or
1 1 dx de, 21

dr = ————dn = ———-d
™ T ade, dn " aT,|V'| "

where it is taken into account that

2
Dz de, 27 , dv
n— o Vv ) S T T Vie —.
© 2m +Vi(z) dn T, dx
In other words, we may consider the equation
2
p
n = == 14
€ o + V()

as the one performing the conversion from variables z(n) to variables n(x)
(similarly, in the axial case). From this follows (also see (1.3) that, for
example, at zero entrance angle in the the case of positrons, the largest
fraction of particles is concentrated at the bottom of the well. For elec-
trons in a planar potential, the largest fraction of particles is outside the
narrow part of the well, and, consequently, the largest fraction of electrons
is concentrated at the levels near the top of the well. Analogous estimations
are also possible for the axial case.
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Chapter 9

Spin Rotation and Radiative
Self-Polarization of Particles Moving
in Bent Crystals

9.1 Spin Rotation of Relativistic Particles Passing Through
a Crystal

With the growth in energy of particles their spin precession frequency in
external fields diminishes, in the ultra-relativistic case being determined by
the anomalous magnetic moment [Berestetsky et al. (1968)]. As a result, for
example, in a magnetic field H of strength 10* Gs the electron (proton) spin
precession frequency w = 2u’H/h (1 is the anomalous part of the magnetic
moment) is 10® s7!, and the spin rotation angle over one centimeter path
length [ is just ¥ = wé ~ 102 rad. It turns out, however, that at particle
channeling in a crystal there appears precession leading to the spin rotation
angle of the order of hundreds of radians over one centimeter path length
[Baryshevsky (1979c,d)].

If a crystal is nonmagnetic, then the equation for the spin polarization
vector 5 may be written in the form (see, for example, [Berestetsky et al.
(1968)], §41)

d¢ o2

dt— h
where E is the electric field at the point of particle location; 7 = ¥/¢; ¥ is
the particle velocity.

Intracrystalline fields E are large, reaching the values of 107 CGSE and
even greater. Therefore from (9.1) follows that for constant intracrystalline
fields, the spin precession frequency could reach 10''s~! and the angle o
could be of the order of 10rad/ cm.

However, when a particle moves through a crystal in arbitrary direction,
the field E , likewise in an amorphous medium, takes on random values at
the particle location point. As a consequence, such a field causes spin

[E(n) - i(CE)] (9-1)

159
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depolarization.

Under channeling conditions the situation is basically different. If the
crystal bending radius is pg, then the beam of protons with the energy of
1 — 10% GeV will change its direction following the crystal bend up to the
radii of curvature of pg ~ 1 cm [Tsyganov (1976a,b); Kaplin and Vorobiev
(1978); Baryshevsky et al. Baryshevsky, Dubovskaya and Feranchuk (1978)],
i.e., the particle will move along a curved path. The stated motion is due
to a constant mean electric field acting on a particle in a bent crystal
[Tsyganov (1976a,b)]. The magnitude of the field reaches 10° SGSE.

Equation (9.1) for a particle moving in a crystal, for example, in a
planar channel, bent to a radius of curvature pg around the y-axis, has a
form (v, =0, E, = 0, the trajectory lies in the z, z plane)

!

Lee) 2 (B 0:2)
The position vector p'= (z, z) of a particle in such a channel rotates about
the y-axis with the frequency Q = ¢/py. Its magnitude oscillates about
the particle equilibrium position pj in the channel with the frequency Q,
amplitude ¢, and initial phase 4. In the explicit form x = p(t) cosQt, z =
p(t) sin Qt, p(t) = py+a cos(Qt+0). We point out that, due to the presence
of centrifugal forces in a bent crystal, the equilibrium point pf, does not
coincide with the position py of the minimum of the electrostatic potential
©(p) of the channel, as it occurs in a straight channel. For example, when
moving in a harmonic well

Sﬁz—ﬁw :0/0—002—E
e 2 ’ kpo’
FE is the particle energy. B .
Integration of (9.2) in the polar coordinate system gives (|¢| =1, E =
~Ve)
cos [24'Q [* dp / ¢ (0)
Ca(z) = sin { e /0 pd—pdt + arctan Cz(o)} . (9.3)

For a harmonic well, (9.3) accurate up to the terms of the order (pj —
po)/po and apyt < 1 can be written in the form

Coa)(t) = €08 {wt + Blsin(xt + §) — sin d] + arctan € (0) } , (9.4)

sin ¢ (0)

where

2u’
w = YE(Pf))
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and

Bloh) =~ (0 ~ po)
is the electric field at the location point of the particle center of equilibrium
in a bent crystal;
B _ il,u’ ka .
69;g

The coefficient 8 in (9.4) is small (for Si the coefficient k¥ = 4 -
10'7eV/cem?, ) ~ 103! for protons with E ~ 100 GeV, as a result,
B ==~ 1072). Neglecting the term containing /3, we obtain that the spin
rotates with frequency w (with growing energy Qi ~ 1/vE, the coefficient
B ~ v/E increases, and the spin rotation turns into oscillations at frequency
w and the frequencies multiple of Q). Due to a large magnitude of the field
E(p}) curving the particle trajectory (E(p}) ~ 107 — 10° CGSE), the fre-
quency w =~ 10* — 10 s~! and the rotation angle ¥ ~ 10 — 10% rad/ cm.

If the radius of curvature py — oo (a straight channel), then only spin
oscillations due to the term containing 8 remain. In this case a significant
spin rotation occurs only at high energies (at low energies it is absent).

9.2 Spin Rotation at Deflection of a Charged Relativistic
Particle in the Electric Field

For relativistic particles moving in an arbitrary electric field, there is a
simple relation between the spin precession angle and the change in the
direction of particle momentum [Lyubosihtz (1980a)]. In the case of pla-
nar channeling, this relationship enables one to determine the spin rotation
angle in the effect considered in (9.1) without turning to particular models
describing the distribution of the intracrystalline field. Below when consid-
ering this problem, we shall follow the line of reasoning given by Lyuboshitz
in [Lyubosihtz (1980a)].

We shall proceed from the Bargmann-Michel-Telegdi equation [Berestet-
sky et al. (1968)] describing the spin behavior of a relativistic particle mov-
ing quasiclassically in an external electric field. Let m be the particle mass;
e its charge, ¢ the spin polarization vector referred to an ”instantaneous”
rest system; v the Lorentz factor; [ the unit vector in the velocity direction;
g the gyromagnetic ratio (by definition, the magnetic moment u = ;> hs,

2mec

where s is the particle spin). According to [Berestetsky et al. (1968)],
<=
e IR o
=100,
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where ¢ is the time in the lab reference frame,

G=— 2;c {H 77 A 5+{Ei]}—(y—1) [f;ﬂ? (9.5)

E and H are the strengths of the electric and magnetic fields at the particle
location point. The first term in (9.5) for the angular velocity of precession
Q) may be written as

e

—
*

gH™,

B 2mcery

where H* is the magnetic field strength in the intrinsic frame of reference;

the term
~dl
_ fpuad
o) [ dt]

corresponds to the Thomas spin precession [Moller (1972)].
From the equation of motion

dp

dt
follows that the instantaneous angular velocity of rotation of a particle
momentum is defined by formula

~dl T v? =1
0= [1 } £ {H AT + {E”H . (9.7)
dt mC’y ~v2 — -1 ¢
Comparison of (9.5) and (9.7) shows that in the absence of a magnetic
field vectors § and € are parallel (or antiparallel) to one another and are

—eE + - [vﬁ] (9.6)

o]l

related as
2
N PPN e At I
[ 98)
or
P EAR S A [ (9.9)
TRV T et ’

It is clear that if the trajectory of a charged particle in the electric field
is a plane curve, vectors () and €y (t) have constant direction along the
normal 7 to the plane of motion (Gg(t) = Qo(t)7, Q(t) = Q(¢)7). In this
case the angle of the polarization vector precession around the normal 77 is

t 2041\ _ AN /
- [ o075+ ] B
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where 6y (t) = fot Qo (t')dt" is the angle between the particle initial momen-
tum and its momentum at time ¢.

If the kinetic energy of a particle moving along the trajectory practically
does not change, the relation between the angles of spin and momentum
rotation is defined by formula

2
-1 -1
0= 1(g—2 + —16. 9.11
(9-2) 5=+ (9.11)
In the nonrelativistic case
1 V2
0=—-(g—1)—=0. 9.12
29— 1) %50 (9.12)

Note that for sufficiently small sections of the trajectory, the relation
(9.11) also holds true even when the direction of vectors g and () changes
with time. In this case the axis of spin rotation through the angle 0 is
perpendicular to the plane containing the initial and final momenta of the
particle. !

It is essential that allowing for radiative damping practically does not
change the relations derived. Indeed, radiative deceleration comes to the
appearance of an additional electric field in the intrinsic reference frame of
a charged particle. This field is unlikely to affect the magnetic moment, so
formula (9.5) for the angular velocity of precession does not change. On
the other hand, the retardation force in the lab reference frame, which is to

LFor a spin wave function, the equation of precession in the electric field has a form

(1)

o = (G030,

%

where €}(t) is defined according to (9.8-(9.9), § is the spin operator. In non-planar
motion, the operators 2(t)§ taken at different instants of time do not commute with one
another, and the symbolic representation of the solution is as follows

W(t) = Texp (ﬂ' /Ot gﬁ(t’)dt') w(0),

where T is the chronological operator [Kagan and Kononets (1973)]. In the first approx-
imation of the perturbation theory

W(t) = (1 —is /:Q(t’)dt’) W(0).

For the polarization vector this corresponds to the equality

€ =0+ | [ awrareo)]
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be introduced into the right-hand side of equation (9.6) at H = 0 has the
form [Landau and Lifshitz (1967)]

- 2¢* o 2y V2 oz
f= - 05721)[ {E22(El 2}
(here the terms negligibly small in comparison with the Lorentz force are

discarded). As the retardation force f is directed opposite to the velocity,
it makes zero contribution to angular velocity

Q:
0 dt

Hence, vectors § and g still satisfy relations (9.8)-(9.9).

In the presence of an external magnetic field the parallelism of vectors
Q and ﬁo is, generally speaking, violated, except for the case of motion in
a transverse magnetic field at E =0 when

. —9 .
G= (gv + 1) Go.
2
It is easy to see that in the ultra-relativistic limit (y > 1) at arbitrary
fields £ and H, the following approximate equality holds accurate up to
the terms eH /mcy?
G =0 (L2254 1) + L (A (9.13)
o 2 2 mey '
Consider some particular applications of formulae (9.8)-(9.11).
Motion in a homogeneous electric field. Let at t = 0 a particle be at
the origin or coordinates, the initial momentum p = mwv~y be directed along
the y-axis, and the electric field strength - along the x-axis. Then the

calculation from formula (9.10) gives the following expression for the angle
of spin rotation about the z-axis:

eEy(t)
Eult ~ + cosh
g = y(2) (g — 2) + arccos W (9.14)
2mc ~ cosh eTyC) +1
where
E(t
y(t) = %arcsinh emc(v)

The deflection angle of the particle in the electric field is

Et
6y = arctan e (9.15)
p
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If the particle kinetic energy varies insignificantly, then 6y ~ “"T‘?t ~ f—vy <

1, and formula (9.14) goes over to (9.11).

Planar channeling in bent crystals. Curving the trajectory of a charged
particle moving along the bent channel is due to the existence of the per-
pendicular to the momentum mean electric field, whose magnitude can
reach 107 — 108 SGSE. In [Baryshevsky (1979c,d)] is shown that, due to
this fact, when ultra-relativistic particles are channeled in bent crystals the
rotation angle of the polarization vector takes on large values (see (9.1)). It
is interesting that this angle may be found from formulae (9.11) or (9.10),
without turning to particular models describing the distribution of the in-
tracrystalline field. Indeed, suppose that the momentum of a channeled
particle is parallel to the bending plane. Then the particle deflection angle
0y coincides with the crystal bending angle, and the spin rotation axis is
perpendicular to the plane of bending. For a proton the radiation energy
losses are vanishingly small, and relation (9.11) holds true. At v > 1, find

(% - 1.79):
—9
f— (1 n 927) 0 = (1 + 1.91¢)b,, (9.16)

where ¢ is the proton energy, GeV. According to (9.16) the proton spin
rotates in the same direction as the momentum does. At ¢ = 10 GeV the
spin precession angle is 20 times as large as the momentum deflection angle.

Note that at the given radius of curvature R the maximum energy of
particles, which are also ”captured” into the channeling regime in a bent
crystal, is eEp,q: R, where E,,.; is the maximum strength of the electric
field. As 6y = y/R, where y is the length of the trajectory, the spin ro-
tation angle of the proton, corresponding to the maximum energy is only
determined by the values of F,,q, and y:

Ormas = %‘3%7” ~ 5.79 - 1077 Eppagy.
If Eppae = 107 SGSE, y = 1 ecm, R = 100 cm, then € ~ 300 GeV and
Omaz ~ 6 rad. This value agrees with the estimates given in [Baryshevsky
(1979¢,d)] and (9.1).

In the case of channeling of positrons, radiation losses at achievable
energies can be significant, and searching for the spin rotation angle one
should use relation (7.6), which takes account of the change in the ki-
netic energy in motion. The corresponding design equation takes the form
(452 ~1.16-107%)

0 = (1+2.272)0, (9.17)
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where & = ¢ Ol/ “e(t)dt is the mean value of energy, GeV.

Scattering by the electrostatic (Coulomb) potential. At quasi-classical
scattering of a charged particle at the angle 6 in a static field of the sys-
tem of charges, rotation of the polarization vector is defined by formula
(9.10). Integration in (9.10) is made along the unclosed trajectory, uniquely
determined by the scattering angle and plane. The rotation axis of the po-
larization vector is probably perpendicular to the scattering plane. When
speaking about scattering at small angles, within the region of particle mo-
tion the potential energy is small in comparison with the kinetic one, and
thus, the connection between the spin rotation angle and the scattering
angle is specified by relation (9.11).

For the Coulomb scattering the latter statement also holds true beyond
pure classical description of a particle motion in the electric field, which
have been used until now. In this case the main contribution to the ampli-
tude of scattering at the angles 8y < 1 comes from the region of high impact
parameters p > h/p, where the particle potential energy is much smaller
than its kinetic energy. Therefore we shall apply the eikonal approach,
enabling representation of the amplitude of scattering at small angles as
follows [Landau and Lifshitz (1977)]

ik oo ) 2w ) ‘
a(lo) = —o= | pdp {(eZSW -1) / elkeopwwdw} (9.18)
2T 0 0
Here k = p/h; S(p) = + f+oo (p12)dz is the difference of the classical

action integrals for a stralght trajectory with the impact parameter p with
and without interaction; v is the angle of vector p, perpendicular to the
particle momentum with the scattering plane. Formula (9.18) is valid for
both non-relativistic and relativistic energies. To take into account spin
precession in the electric field, let us multiply the function exp(iS(p)/h) in
(9.18) by the rotation matrix

R(O(p)) = exp (—zs[ﬁ] ) ) (9.19)

where 6(p) is the spin rotation angle corresponding to the motion of the
charged particle along the classical (close to straight) trajectory with the
impact parameter p; § is the spin operator. It has been shown above that
the angle 6(p) is connected with the angle of the momentum deflection 6 (p)
for the same trajectory by relation (9.11). On the other hand, the angle
0o(p) is determined in terms of the action function:

o) = %d%sm (9.20)



Spin Rotation and Radiative Self-Polarization of Particles in Bent Crystals 167

Thus, provided that the angles 6(p) and 6p(p) are small in (9.18)
exp(iS(p)/h) should be replaced by

exp(iS(p)/M)R(0(p)) = exp(iS(p) /1) [1 - Z’bdfzif)
x “;;f 5+ ibdii)p ) Si,?kw sy] S
where
_(9-27-1 -1
b( 2L > (9.22)

(it is assumed that the z-axis is directed parallel to the normal to the
scattering plane, the x-axis - along the initial momentum of a particle).
Upon integration with respect to the angle 1, the formula for the scattering
amplitude takes the form

A(0o) = a(bp) + bs, /OOO J1(kbBop) LZ) exp(iS(p)/h)} pdp;

a(bo) = —ik /O h Jo(kbop) [exp(iS(p)/h) — 1] pdp.  (9.23)

Using well known relations for the Bessel function

d > 26 (63
%(PJl(k90P)) = kbopJo(kbop); / Jo(kbop)pdp = 1520),
0
we obtain with the accuracy up to the terms of the order of 63
A(6y) = a(0o)(1 — i8.b0y). (9.24)

From this the angle of spin rotation about the z-axis is bf.

It may be argued that this result within the range of angles 6y < 1,
0 = by < 1 is not bound by any additional conditions. Within the quasi-
classical limit the requirement of smallness is only imposed on the scattering
angle 6, while the spin rotation angle at ultra-relativistic energies may take
on any values.

Such consideration has nothing to do with the use of relativistic equa-
tions, being applicable to particles with arbitrary spin and gyromagnetic
ratio. In the case of scattering of electrons with not very high energies
(v ~ 10%) in a Coulomb field of a nucleus of charge ze, the anomalous mag-
netic moment of the electron may be neglected, which according to (9.23)
and (9.24) gives

'262
9 2F<1*ZT> 2 9
A(Bo) ~ 262 .:;2 exp<2izeln0>
Pl T (1+i%5) hv 2

Loy—1
X {1 - 102727 0o + 9(93)] , (9.25)
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where &, is the Pauli matrix. And the spin rotation angle is
v—1
5
Relations (9.25) and (9.26) may be obtained independently on the basis of
the solution of the Dirac equation in the limit (in extreme case) 6y < 1
(see[Gluckstern and Lin (1964)]). At non-relativistic energies 6 = 50y,
and at ultra-relativistic energies 8 = 6y, which corresponds to helicity con-
servation.

0 = fo. (9.26)

In conclusion we shall point out an interesting consequence of relation
(9.8): if the gyromagnetic ratio satisfies the condition

1<g<?2, (9.27)
9
g—2
ticle spin at all (the angular velocity of precession vanishes, though the
magnetic moment is nonzero). This is a purely relativistic effect caused by
cancellation between the ”dynamic” and Thomas precessions. At ¢ < g,
spin rotates in the same direction as the momentum does, at € > ¢, it ro-
tates in the opposite direction. For example, a deuteron with g = 1.72, as
well as some nuclei (e. g. °Li with g = 1.64), satisfies the condition (9.27).
2 For a deuteron g = 11.5 Ge V. Analogous phenomenon also occurs in a
transverse magnetic field, providing that 0 < g < 2. The energy at which
the polarization vector preserves constant direction in this case equals
€0 = %mc2
(for a deuteron, for example, £y = 13.4 GeV).

then at the energy ¢g = mc?, the electric field does not influence par-

9.3 Depolarization of Fast Particles Moving in Matter

As it has been shown (see (9.2), at small deflection of charged particles
from the initial direction in the magnetic field, the spin polarization vector
¢ rotates around the normal to the plane passing through the initial and
final momenta py and p; through the angle

2

-1 ~-1
0=1(g—2) + —— bo. (9.28)
2y gl

Here 6y is the angle of momentum py with momentum pj; v is the Lorentz
factor; ¢ is the gyromagnetic ratio (by definition the magnetic moment

2For nuclei the quantity g is associated with the so-called nuclear gyromagnetic ratio by
formula g = gnucA/z (A is the number of nucleons in a nucleus, z is the atomic number).
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W= 2‘3;‘695, where e is the charge, m is the mass, s is the spin of the particle).

At small change in the kinetic energy, providing that § < 1, 6y < 1, formula
(9.28) holds true irrespective of the character of the intermediate motion
of the particle in question.? It is easy to see that when 6 < 1, the angle of
deflection of the polarization vector from the initial direction C_i) is

0 = Osiny, (9.29)

where 1 is the angle of (o with vector [Fop]. Relations (9.28), (9.29) allow
calculating the degree of depolarization of the charged fast particle moving
in a macroscopic medium [Lyubosihtz (1980b)]. Below we shall follow the
same line of reasoning as given in [Lyubosihtz (1980b)].

Consider the case of longitudinal polarization (¢p = m/2). It is clear
that at multiple scattering of a particle in the Coulomb field of nuclei and
electrons the mean values of the transverse components of the momentum
and polarization vector are zero. Thus, vector (C]) preserves its direction.
Despite the fact that ((\) = 0, the quantity (62) = (62) = (g?)/(ﬁ is
nonzero. As a result, the particle undergoes depolarization (the value of
|5H| decreases).

According to (9.28) the mean-square angle of deflection of the polariza-
tion vector 5” from the initial direction when the particle is passing through
a thin layer of matter Al is related to the mean-square angle of the multiple
Coulomb scattering in this layer as

_ —242-1 ~-—177
6%) = (6%) = {g + ] 03 9.30
(67) = (67) SR ol U (9-30)
It is known that (62) is described with good accuracy by the expression
[Rossi and Greisen (1948); Bricman et al. (1978)]

E.\° 72 Al
)= =) ——m— 9.31

<0> : (m> (7271)2Lrad, ( )
where z = e/eq is the ratio of the particle charge to the electron charge;
m is the particle mass; s = 21 MeV; L,.q is the radiation length for an
electron. Substituting (9.31) into (9.30) and taking into account that at
small (6?) the degree of polarization is

n=1-(cosf) ~ %<é2>, (9.32)

3In the particular case of quasi-classical motion along the plane trajectory the angles 6
and g in (9.28) may take on any value (see [Lyubosihtz (1980a)]).
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we come to the formula describing depolarization of longitudinally polarized

2 2
m:;£<ﬂﬁ P_2+ 1} = (9.33)
m 2 Y+ 1] Lyaa

If a particle is polarized in the direction perpendicular to the momen-
tum, then at fixed angle i of the polarization vector 5 1 with the normal to
the scattering plane 77, in view of (9.29), n. = n sin? 1. At averaging over
the azimuth angle, a factor 1/2 appears.

Thus, when polarized particles pass through the layer of matter, their
depolarization in the transverse direction is half as much as depolarization
in the longitudinal direction 1, = %nH. This leads to the fact that in
the general case the initial angle ® of the polarization vector with the
momentum increases by

particles:

1
AD = 27 sin 2 (9.34)

(n) is determined from formula (9.33)). A® reaches its maximum value
at ® = 7/4 and vanishes at ® = 0 and ® = 7/2. And the degree of
depolarization

1
n= (1 ~5 sin? <I>) n = (2- sin? ®)7, . (9.35)
According to (9.33) and (9.35), at non-relativistic energies
1, 1., Ey\? , Al
=22 (1 Zsin?®) (= —1 .
o Lo (1 bare) (B) oo o
whereas at ultra-relativistic energies
1, 1., E,\? , Al
=22 (1-Zsin?®) (= —2 .
Lo (1 bare) (B) w2l

We point out that the basic formula (9.33) holds for a layer of fixed thick-
ness, passing through which a particle loses a small fraction of its energy,
and the condition 7 < 1 should also be satisfied. With the latter condition
preserved, it is easy to take into account the energy losses by substituting
expression (9.33) into the integral

1, (BN [ATg—2 1 1% do
—— s 9.38
=g (m) /0 2 Jrv(rr)—kl Lyod’ (9:38)
where (z) is the Lorentz factor of the particle at the distance x from the
front boundary of matter. Here relations (9.34) and (9.35) remain valid, as
well as expression (9.36) for non-relativistic energies.
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From (9.38) follows that the degree of depolarization of the longitudi-
nally polarized protons or antiprotons (|z| = 1, % = 1.79, m = 938 MeV)
is described by expression

Al 2
0.28 dx
=0.8-1073 1 9.39
ol /0 < + 1+0.53T(x)) Trad’ (9:39)

where T'(z) = E(z) — myc? is the kinetic energy7 GeV. It is easy to see that

on the nuclear collision length in lead ( 20) protons with the energy
T > 1 GeV proton get depolarized by 1.5 —2%.

In a similar manner one can estimate the degree of depolarization of a
passing beam of neutral particles with the magnetic moment p = %ZC GaSa
(for a neutron g, = —3.82, and for a A-particle gy = —1.2). Indeed, in the
first approximation the neutral particle moves in the same electric field as
the charged particle deflected through small angles. In the given electric
field the spin rotation angles of the particle in question are related to those
of the proton as (see [Lyubosihtz (1980a)]).

2y
) =au/ (- 217 (9.40)
In view of (9.40), (9.35) and (9.38) the degree of depolarization of arbi-
trary polarized neutral particles is energy-independent and described by

R 50 Myl
na—<1 2sm(I>)/0 b()a dx

1 1 E.\? , Al
= - (1= Zsin? =) 42 . 41
3 < 5 sin '~I>> (mp> 95 I (9.41)

This result may also be obtained in a different way, considering the

the expression

change in polarization at Schwinger scattering of a neutral particle with a
nonzero magnetic moment in the Coulomb nuclear field. In the unit event
of Schwinger scattering the polarization vector of scattered particles 5 =
—C_E) +2ﬁ(a)ﬁ), where 7 is the unit vector along the normal to the scattering
plane [Berestetsky et al. (1968)]. Upon averaging over the azimuth angle
we have C_h = —&JH, 5 1 = 0. From this follows that in the layer of thickness
Al

77,1” = 277111_ = 2N(/ USch(eo)dQ)Al.

Here N is the number of nuclei per unit volume;

1 ze? 2
osen(bo) = = ( > G2F?(ma /72 — 16p);

4 \ myc26y
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F is the form factor including electron screening of the nuclear field and
the influence of the finite size of a nucleus. Integration with respect to the
solid angle gives (compare with similar calculations in [Rossi and Greisen
(1948)))

1 /E\° , Al

From (9.41) follows, in particular, that the degree of depolarization of lon-
gitudinally polarized neutrons on the radiation length n,, =9 - 10~4; for
A-hyperons 1, = 0.9 - 107*Al/Lyqq-

In view of the smallness of factor g — 2 the energy-dependence of de-
polarization of p-mesons and electrons is more appreciable than that of
the protons. For longitudinally polarized p-mesons (m, = 105.6 MeV,
(g —2)/2=1.16-1073), formula (9.38) has the form

2
M = 51073 /Al 2321073 4 — 1 do (9.42)
i 0 1+477(z) ) Lyad’

where T'(z) is the kinetic energy of the p-meson, GeV. The degree of de-
polarization of y-mesons passing through the layer of lead can reach 10%,
while for media with a small atomic numbers it is as low as a fraction of
a percent. As for electrons, the approach developed here is only applicable

provided that Al < Lyqq, T > 15,/ % MeV. And

2
1\? Al
Ney = 220 (2.32 21073 + T) I (9.43)
ra

At the energies T' < 10 # electrons become completely depolarized.

rad

9.4 Oscillations of Polarization of a Fast Channeled Particle
Caused by its Quadrupole Moment

In (9.1) we considered the effect of spin rotation of a relativistic particle
channeled in a non-magnetic bent crystal, which is caused by the action
of the crystal electric field (also responsible for the rotation of a particle
momentum) on tits dipole magnetic moment. It turns out that for particles
(nuclei, ions) with spin I > 1 the presence of multipole moments, first of
all, the quadrupole one, results in spin rotation even at motion in a straight
channel [Baryshevsky and Sokolsky (1980)].
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First consider a nonrelativistic particle with the quadrupole moment Q).
In view of the quasi-classical character of its motion in the channel, we may
write the equation of motion for its moment as follows:
di; e A
7; = %&kl@kn@ln, (9.44)
where I; is the operator of the particle spin projection;

A 3Q - 2
Qin = m {Iln — gI(I-i- 1)5ln}

is the operator of its quadrupole moment, fln = flfn + fnfl;

_ Py

Pin = 0x;0x,,
is the the second-derivative of the electrostatic potential of the channel at
the point of particle location; e;x; is the totally antisymmetric unit ten-
sor. It is essential that due to the Lorentz factor compensation through
relativistic transformation of o, and ¢, equations (9.44) are applicable for
a relativistic channeled particle as well. The change in polarization over
the unit length of the particle flight is energy-independent. In the case
of a particle moving near the channel center, it is possible to employ the
harmonic approximation for ¢. Here the quantities (;; do not depend on
the coordinates, and the solution of (9.44) simplifies considerably. So, for
a particle with spin I = 1 moving in the direction of the z-axis (z, y are
the principal axes of the tensor p;1), we get
I.(t) = I,(0) cos awt 4 I,,.(0) sin awt

I,(t) = I,(0) coswt — I.,(0) sinwt,
[ (t) = 1.(0) cos(1 — a)wt + L, (0) sin(1 — a)wt, (9.45)
Aﬂcx(t) = Am(o)7 fyy(t) = fyy(0)7 jzz(t) = jzz(0)7
[y (t) = Ly (0) cos(1 — a)wt — I,(0) sin(1 — a)wt,
I.(t) = I,.(0) cos awt — I,,(0) sin awt ,
[ (t) = I.,(0) coswt — I,,(0) sinwt , (9.46)
where w = %gpm; o = Z*. From relations (9.45), (9.46) follows that when

a fully polarized particle with spin directed along the z-axis enters a crystal,
the mean values of the following projections of spin and quadrupolarization
will change with time

(I.(1)) = cos(1 — a)wt, (Quy(t)) = —ngin(l —a)wt. (9.47)
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Similarly, at the initial polarization: (a) in the z-direction

(I.(t)) = cosawt, (Qy.(t)) = —ngm awt (9.48)
(b) in the y-direction
(I,(t)) = coswt, (Q..(t)) = gQ sinwt . (9.49)

Thus, polarization of the particle with ¢ # 0 moving in a straight
channel undergoes oscillations as the particle advances into the target. Here
in the case of the transverse initial polarization of the particle at o = 1
linear oscillations occur, and spin rotation only appears at a # 1, i.e.,
at the asymmetry of the channel field. Estimate the magnitude of the
effect. In axial channeling of a positively charged particle, the values of
field inhomogeneity can be as large as of the order of 108 V/cm?2. In this
case, for a bare nucleus (Q ~ 1072* cm?) w ~ 10°s71, i.e., the polarization
can change by 1% over the path length of about 1 ecm. For an ion passing
through a crystal, due to antishielding, the effective field on the nucleus
may increase by several orders of magnitude. As a result, the change in the
polarization can increase by several orders of magnitude.

A negatively charged elementary particle, for example, an Q-hyperon in
the case of channeling will move inside the atomic layer or in the region
of the nuclear tube along the crystallographic axis. Here the electric fields
(and their inhomogeneities) are considerably higher than in the interplanar
channel, so the appreciable rotation of spin may occur even at quite small
values of ). For example, for a nuclear tube in lead @, ~ 10%° V/cm?
and the value of w ~ 10571 is attained at @ ~ 10726 cm?. The measure-
ment of the polarization of 2~ under such conditions may provide unique
information about the hyperon quadrupole moment.

Note also that in a bent channel, for a positively charged particle the
magnitude of the spin rotation due to the quadrupole moment, generally
speaking, should grow at the cost of trajectory displacement closer to the
atomic plane. However, in this case spin rotation due to magnetic moment
should be simultaneously taken into account.

9.5 Radiative Self-Polarization of Spin of Fast Particles in
Crystals

Let a particle move in a channel bent with the radius of curvature R around
the z-axis. The particle motion along the curved path in such a channel
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means that here the particle is affected by the electric field € perpendicu-
lar to the particle momentum. Therefore the particle in its rest frame is
affected by the magnetic filed H = e directed along the z-axis, where
is the particle Lorentz factor. In the magnetic field spin undergoes radia-
tive transitions between the states with different spin projections on the
the field direction. These spontaneous transitions lead to accumulation of
particles at a lower energy level, i.e. to the beam polarization along the
z-axis, if it has not been polarized when entering the crystal [Baryshevsky
(1979¢)].

A detailed description of the self-polarization effect can be given, using
the equation for spin motion in an external electromagnetic field with due
account of radiative damping [Baryshevsky and Grubich (1979a)]. Suppose
that the crystal is non-magnetic. In this case the spin polarization vector
of a particle satisfies the equation of the form (compare with [Baier et al.
(1973)], p. 204)

a¢ e [y 1 S a7 2 = 8 [vw]

E - E (/140 + 1"‘7) [C[UE]] -T (C — gU(UC) + 57\/3 |U7‘ ) 5 (9.50)
where g/ is the anomalous part of the magnetic moment (it depends on
the particle energy); po is the Bohr magneton; T—! = 5v/3ah?~°|w|?/8m?
is the damping constant; « = 1/137; ¢ = 1 is the velocity of light; ¥ is
the particle velocity; m is its mass; W is the acceleration. The augend in
(9.50) describes the effect of spin rotation in a bent crystal (see (9.1)). The
addend leads to the effect of radiative polarization of the beam.

Consider the projection of the polarization vector 5 on the z-axis, around
which the crystal is bent. If the particle undergoes planar channeling
around the z-axis in zy-plane, then the first term on the right—hand side
of (9.50)) has a zero projection onto the z-axis, i.e.,

dg.
dt
The solution of this equation has the form

()= GO (~ [T @) - s5v8)
X exp (— /Ot T—l(t’)dt’> /Ot dt/T_1(t/)[77|><w?ﬁ]z
X exp (/Ot Tl(t“)dt“> . (9.52)

Generally speaking, the particle trajectory in the channel is known.
For instance, in a bent planar channel © = p(t) cosQut, y = p(t) sin QL.

=T — 8(5V3T) v x w].|w| ! (9.51)



176 Channeling, Radiation and Reactions in Crystals under High Energy

When the potential is harmonic k(p — R)?/2, p(t) = po + a1 cos(Qt + §),
where p(t) is the radius of the particle orbit; €, = ¢/po is the rotation
frequency in a bent crystal; Q is the oscillation frequency in the channel;
a1 is the oscillation amplitude; ¢ is the initial phase; pg is the radius of
curvature of the particle equilibrium trajectory in the channel. The value of
displacement of the particle equilibrium trajectory from the channel center
A =m~y/kR is limited by the channel width A < d/2.

In the case when a3/A < 1, the acceleration equals 1/R with high
precision. As a result,

C(1) = C(0)e™/™ 4+ 8(51/3) 7 (1 — e~H/T0), (9.53)
where T ' = (5v/3/8)a(hy/m)?(y/R)3. From (9.53) follows that at times
t > Ty, the value of ¢, = 8(5v/3)~! ~ 0.924 irrespective of the value
of the initial polarization (i.e., the beam appears to be polarized along
the crystal bending axis z). For example, at channeling of positrons with
the energy of 100 GeV and R ~ 12cm, the polarization length Tj in (110)
channel of a single crystal of tungsten is approximately 1 cm. The estimates
show that in the case of axial channeling of electrons with the energy of
50 GeV and R ~ 10 cm the same polarization length may be attained even
in single crystals of relatively light elements (e.g. silicon). The length of
self-polarization decreases rapidly with the growth of particle energy. Note
also that over the length Tj the particle emits one photon, i.e., the intensity
of this type of radiation is very high.

At a1 /A > 1 at the exit from the crystal the magnitude of the projection
of the polarization vector ¢, (t) as a function of crystal thickness is the sum
of a non-oscillating and oscillating with frequency €2 terms. Upon averaging
over the initial state of the beam, only non-oscillating part remains, which
vanishes with the increase in «;/A. The aforesaid means that even in
the limiting (extreme) case of an undeformed crystal (R — oo, A — 0
for the given particle trajectory there appears a nonzero projection of the
polarization vector (. (t) oscillating with frequency, which vanishes after
averaging over all the initial points of particle entrance into the crystal.
However, the intensity of electromagnetic radiation accompanying radiation
polarization of channeled particles will be high in this case too.

As was mentioned above, the anomalous magnetic moment depends on
the particle energy. In the case of channeling of charged particles, the pa-
rameter y = ehey/m? (see [Baier et al. (1973)]) may be of the order of unity
and greater. Therefore the phenomenon of spin precession of charged par-
ticles described above opens up possibilities for experimental investigation
of the dependence of radiative corrections on particle energy.
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It should be emphasized that with x approaching unity in the spin-flip
process, a very hard quantum is emitted. Therefore if in the experiment
the electrons are selected by energy as well, then the degree of polarization
of the beam will turn out to be higher. In this case the theory based on
equation (9.50) is not suitable. The process may be studied, for example,
using the density matrix formalism.
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Chapter 10

The Influence of Radiative
Transitions on Channeling of Charged
Particles in Crystals

10.1 Particle Lifetime at the Transverse Motion Level

Radiative transition of a channeled particle from one level to another is
accompanied by the change in its energy and momentum. Therefore one
should expect that such transitions may affect the character of particle
motion in a crystal. In particular, the redistribution of the initial population
of transverse motion levels, which will influence the beam divergence at
the crystal exit [Baryshevsky et al. (1978); Baryshevsky and Dubovskaya
(1977a,b)].

Classical theory of the influence of electromagnetic radiation on the mo-
tion of channeled particles was first given by Bonch-Osmolovsky and Pod-
goretsky in [Bonch-Osmolovskii and Podgoretskii (1978, 1979)], quantum
theory - by Grubich and the author in [Baryshevsky and Grubich (1978);
Baryshevsky et al. (1978)]. For example, as shown in [Bonch-Osmolovskii
and Podgoretskii (1978, 1979); Baryshevsky and Grubich (1978); Bary-
shevsky et al. (1978)], development of electromagnetic cascade in a crystal
is possible in the length considerably smaller than the radiation length. A
similar conclusion was later made in [Akhiezer and Shul’'ga (1980)].

The possibility in principle to change the angular divergence of a beam
under channeling conditions is due to the fact that different quasi-classical
transverse momentum corresponds to different levels of transverse motion.

To estimate the rate of the process in question, let us first find the radia-
tion width of excited levels in the model of a rectangular well [Baryshevsky
et al. (1978); Baryshevsky and Dubovskaya (1977a,b)]. Let us pass to the
coordinate system with a zero longitudinal particle momentum. In this case
the particle moves between two barriers of height ' — vyu (v = E/m, u is
the height of the potential). To determine the radiation length, apply the

179
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dipole approximation:

4e?w3
Lo =D —5" el (10.1)

2, . . . .
ﬁ(n2 —n'") is the transition frequency; ,, is the matrix

element of the coordinate for the transition between the states n and n'.

where Wy, =

For a rectangular potential well of the channel the matrix element has the
form
o 2a  4nn/
= T )

As a result, the expression for the radiation width of the level n, and corre-

(10.2)

spondingly, for the lifetime at the level 7,, in the lab system may be written
as follows:

1 A n'*n?

) (10.3)
n v n’'<n n? —n'

_ 32 %2
where A = =5 275,

Taking into account that in the high-energy range there are many levels

1/2
2 . . . .
Nomaz ~ (277’;;1 yu) ) in a well, to obtain accurate enough estimate, in

equation (10.3) one may substitute summation for integration, which yields
the expression

1 A

— ~ —n®In2n. (10.4)
Tn 2y

From (10.4) follows that the lifetime for a particle with maximum proba-

bility of residing at level n,,q, (this corresponds to the particle incident on

a crystal at the Lindhard angle 91) is

Tmaz ary

Thus, from (10.5) follows that, e.g., for a positron of energy E ~ 1

2
L & (ﬂ>3/2 In ma’uy. (10.5)
m

GeV, the length over which the level population will drop by a factor of e
iS Lymaz ~ n ~ 1072 — 1072 cm. As also seen from (10.4) the length I,
should grow with the decrease in n. For instance, for particles entering the
crystal at the angle one-tenth as large as the Lindhard angle, n = n,,4. /10
and I, = lyas - 103 ~ 1 - 10 cm.

Let the angular divergence of the beam incident on the crystal be 9 ~
10~% rad, i.e., of the same order of magnitude as the critical angle for
channeling. In this case for positrons, in fact, all the levels in the potential
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well of the channel are populated. According to (10.4), (10.5) after a beam
of positrons of energy E ~ 1 GeV passes through a single crystal with the
thickness L ~ 0.1 —1 cm, one should expect an order of magnitude decrease
in the angular divergence of the beam.

With the influence of multiple scattering on the beam evolution in the
channel ignored, the particle distribution over the levels can be analyzed
relatively simply. Let us assume that the initial population over the levels
is equally probable. The calculation (Fig. 8) will be carried out using the
kinetic equation of the form [Dubovskaya (1978)]

aaitn = - Z Wnn’pn + Z Wnn/pn’

n’<n n’>n

Figure 8. The change in the population of the transverse motion levels
for a particle passing 0.1-cm-thick crystal target.

The expression for W, is obtained from formula (10.3) if summation
over n’ is ignored, i.e.,

2
A n2n/

Woim = oy w2 =

Interestingly enough, to obtain the above estimates, the difference be-
tween the real potential of the channel and the harmonic one appears to
be of principal importance. In a harmonic well the lifetime at the ex-
cited level is easy to find from the classical formula for radiative damping

T = (%6%2) ' (h=c=1). According it for the length over (in) which the
level population will reduce by a factor of e, we get the estimate [ ~ 10 cm,
i.e., in the case of harmonic potential the phenomenon of radiative cooling
is practically absent [Dubovskaya (1978)].

It should be noted, however, that the obtained estimates of the the
radiative cooling rate do not take into account the processes leading to the
increase in the magnitude of the transverse momentum of the channeled
particle, such as, for example, multiple scattering in the channel. Allowing
for multiple scattering can appreciably affect the features of the motion of
a channeled particle. Consider this process in more detail.!

IThe results presented in (10.2) and (10.3) were obtained together with A.O.Grubich.
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10.2 Classical Theory of Channeling of Charged Particles
with Due Account of Radiation Energy Losses

As the number of the transverse energy levels of a channeled ultra-
relativistic charged particle moving in a potential well formed by the crystal
axes (planes) is great, we shall use the classical theory as the first step to-
wards the description of the particle motion. In classical thermodynamics
the equation of motion of a charged particle in an external field with the
account of radiation slowdown has the form [Landau and Lifshitz (1967)]

i -

Lo F 4+ Foa, 10.6
ar L+ L'rad (10.6)
where p = m~¥ is the particle momentum; Fj = e (5—!— i@ _‘]) is the
Lorentz force;
2e292 [ §(0W) 5 3W(vw) , T(Tw)? 4
Fmd:? w + 2 Y+ 2 7t ! v (10.7)

is the radiative friction force; @ = dv/dt;w = dwi/dt; ~ is the Lorentz
factor. Using a well known formula of relativistic dynamics [Landau and
Lifshitz (1967)]
L0l e L L
myw = F — C—Q(UF)U; F =Fp+ Fra, (10.8)

enables one to write equation (10.6) in the form convenient for further
analysis (¢ = 1):

Fr, — 0(GF,) 2
- =+ n:iv 2 grev[w+372w(ﬁ 7)); (10.9)
Fr—v 2
v — Lm L 57y Tl + 30 () (10.10)

where 7. = €2/m is the classical electron radius. In a non-magnetic crystal
Fp = —Vu, where u is the potential energy of particle interaction with the
crystallographic axes (planes), which is averaged over thermal vibrations of
the crystal lattice. Recall that equation (10.10) is the corollary to equation
(10.9) and formula v = (1 —v2)~1/2 Jand it may be written as, for example,

i — 3. (10.11)
It is almost impossible to solve equation (10.6) without using numerical

methods. Therefore let us dwell on the simplifications that are may be
realized in the original equations.
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As is known, equation (10.6) is applicable when in one of the reference
frames F,..q < Fp. Therefore instead of equation (10.9) an approximate
equation is usually used, which is obtained by substitution into the right-
hand side of equation (10.9) of the particle acceleration expressed in terms
of an external electromagnetic field acting on a particle:

@ = [F, — §(0FL))/my. (10.12)

The condition of smallness of the radiative friction force ﬁmd as compared
with the external force affecting the charge F;, has the form [Landau and
Lifshitz (1967)]
V< Vquant = — (10.13)
’I“eFL
However, classical electrodynamics becomes unsuitable due to the pro-
duction of electron-positron pairs in the external electromagnetic field yet
in the range of energies (see [Landau and Lifshitz (1967)], p.267)

Y ~ Y8 = Yquant/137, (10.14)
at which the external field ¢’ acting on the particle in the instantaneous rest
frame (&' = ve) attains the value of the Schwinger field 4yqn: = m?/eh.

In this regard it is interesting that when the condition
o mA@V)E| | 2mPuy
V=T = T FE T roFid
is fulfilled, in the right-hand side of equations (10.9) and (10.10) in the
second order perturbation theory, the terms leading to the particle ”self-

(10.15)

acceleration” prevail. The magnitude of the Lorentz factor v, appears to
be of the same order of the magnitude as vg (implying qualitative estimates
we assumed that |(0V)F| &~ vy 4F; /d, where d is the channel width).2.
Indeed, assuming that v, ~ (Frz/my)'/?, we obtain

Vsa = 'YSO‘il(Tef)l/S(d/miz/gv

where « is the amplitude of the particle vibrations in the channel; « = 1/137
. Thus, at 2 = d/4v, = ysa~(re/d)Y/3 ~ 5.

One might suppose that the application of the Dirac-Lorentz equation in
the energy range v ~ vg (due to quantum effects), though not being quite
correct, nevertheless may give a correct qualitative pattern of the motion

2When deriving inequality (10.15) it was taken into account that the velocity of the
channeled particle is directed at a small angle with the crystallographic axes (planes)
forming the channel |v) | < 1, as well as the fact that the Lorentz force acting on the
particle in the channel is transverse.
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of particles with the energy v ~ 7s channeled in the crystal. However,
according to the estimates obtained, application of the classical equation
of motion in the case of a conventionally used approximate equation (10.9)
with the radiative force Fhqq = F*md(u?@)) in the range of energies v &~ g
is quite problematic.

In the range of energies v < g the principal terms in right-hand sides
of equations (10.9) and (10.10) are those proportional to the derivative of
the particle acceleration w. As a consequence, to solve the problem, one
may use the approximate equations

2 .
w—wmhzgmm& (10.16)
F’ —
= T = 9 A8 (7). (10.17)
m

When the crystal thickness is not very large and the time-dependence of
factor v may be neglected, for the simplest forms of the potential u the
solution of the equation of motion (10.16) may be found explicitly. For
example, at planar channeling in a harmonic potential u(x) = kx?/2 the
approximate solution of equation (10.16) for particle transverse vibrations
in the channel has the form

z(t) = @, cos(Qt + @)™, (10.18)

where Q2 = k/m~y; ¢ is the initial phase; 7 = 3m/r.k .

The solution is similar for the case of axial channeling in a two-
dimensional harmonic potential u(7) = kp?/2 (§ is the radius-vector of
the particle in the plane perpendicular to the crystallographic axes which
form axial channels).

Substitution into right-hand sides of equations (10.16), (10.17) of the
quantity @ corresponding to the zero-order approximation (of)(10.12) gives
approximate equations of the form [Bonch-Osmolovskii and Podgoretskii
(1978, 1979)]:3

F,  2r = =
5, — L = 2T G0y 10.19
w my Sm(v VL ( )
2 FLU 2 TC 2 2
= — — = Fz: 10.20
7 m 3m2 ) L ( )

Harmonic potential is often used when considering planar channeling of
positively charged particles. Since the real potential may contrast sharply

3The equation of motion for a longitudinal component of the radius-vector is not pre-
sented, as we are mainly concerned with the transverse motion in the channel.
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with the harmonic one, we shall dwell on the quantitative comparison of
the features of particle motion in different potentials.

A thorough a review of different model potential is given in [Gemmell
(1974)]. In particular, it is shown that in the case of channeling of positively
charged particles the potentials of the channels formed by the planes (110)
of a single crystal of silicon are well described by the harmonic potential
(see [Gemmell (1974)], Fig.9).

Let us consider how a harmonic potential approximates planar channels
of single crystals of other chemical elements (Fig. 9).

Figure 9. The potentials of single crystals: planar channels (solid
curves), harmonic channels (dashed curves).

The potentials in Fig 9. are depicted in the space region from the chan-
nel center to the point located at the distance equal to the shielding radius
a from the equilibrium position of atoms of the crystallographic plane,
forming the channel wall. The curves are calculated from the formulae

ul(x) = u(z) — u(0); u(z) =u®(z + dy/2) +ub(z — dy/2),

P
2 1/2

(5"

a a

(n is the density of atoms in the crystal; z is the nucleus charge; a is the
shielding radius; d, is the distance between the planes). At point z =
dp/2 — a harmonic potentials u,(z) = kx?/2 are equal to the potential

uh ().

Interestingly enough, the elasticity constant k7, found from the equality

kr(dp/2 —a)? = u;zj?(dp/2 —a)

where the Lindhard potential is

u*(z) = 2mnze’ad,

is well described by the quantity
k = 4dnne?, (10.21)

used by Bonch-Osmolvsky and Podgoretsky [Bonch-Osmolovskii and Pod-
goretskii (1978, 1979)] (here n. is the electron density in the central part
of the channel). The magnitudes of the attenuation length A = 3mc?/kr,
calculated with the help of the elasticity coefficients k; and k (electron
density n, = nz/2.72) are given in the Table. The accepted expression for
ne corresponds to the uniform distribution of the crystal electrons in the
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Crystal | Channel | Apem | Aem
Si (100) 8.8 -
Si (110) 11.64 | 11.86
Ge (100) 5.6 5.88
Cu (110) 2.92 | 3.38

central part of the channel with the density which is by a factor of e smaller
than the mean electron density fi. = zn.4

The phase trajectory of the transverse motion of a positron (Fig. 10,
curve 1) channeled in (110) channel of the single crystal of silicon can be
found by means of numerical solution of the system of equations (10.19)-
(10.20) in the Moliere potential. The phase trajectory of the particle moving
in the Moliere potential is only slightly different from a circle which is the
phase trajectory of the harmonic motion (curve 2).

Figure 10. The phase trajectory of the transverse motion of a positron:
1. The trajectory of a particle moving in the Moliere potential; 2 - the
trajectory of the harmonic motion.

In the case of planar channeling of positrons, the value of R = d,/2a
serves as a criterion for applicability of the harmonic potential. The smaller
the value of R, the better the harmonic potential approximates the channel
potential in the range |z| < d,/2 — a. So, for the elements given in the
Table we have: in silicon for the channel (100) R ~ 3.5, for the channel
(110) R ~ 4.9; in tungsten for the channel (111) R ~ 4.1, for the channel
(100) R ~ 9.9; the harmonic approximation in this case appears to be of
little use.

Now consider the change in the total energy and the attenuation of the
transverse velocity. In the initial stage of motion the losses of the particle
total energy (L) = Fg — E(L) and the attenuation of the amplitude of the
particle transverse velocity 6,,, are of linear character due to the presence
of the radiative friction force (Figure 11):

e(L) = a.L; (10.22)

0,0 (L) /6 (0) = 1 — agL. (10.23)

4Henceforth the model of the harmonic potential uy(x) with the elasticity constant
(10.21 is used more than once for quantitative assessments; by the channel width d we

shall mean (dp — 2a).
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Figure 11. Radiation energy losses as a function of thickness.

Note that at the energies used in the experiments with channeled parti-
cles until recently (E < 10 GeV), the linear laws (10.22), (10.23) are valid,
for example, in diamond and silicon targets up to the crystal thicknesses
as large as several centimeters. Indeed, in the case of particle motion in
a harmonic potential it follows from equations (10.19), (10.20) that if the
conditions vpfy < 1, or t < 7/9202, > Y90y > 1 are fulfilled, corresponding
to the smallness of radiation energy losses ¢/ Ey < 1, the particle trajectory
is determined by expression (10.18), and the character of the changes in its
total energy - by expression

70

() = L+ (1—e2t/m)y202/2
where 7o is the Lorentz factor corresponding to the initial energy of a
particle Eg; 6y = z082o is the initial amplitude of the particle transverse
velocity in the channel. From (10.24) we obtain the below equality for the
coefficient a. at motion in a harmonic potential

(10.24)

302
_ mp 0
e = ——.

. (10.25)

the coefficient ag = 771, From (10.24) is also seen that in the case yp6p < 1
the approximate solution of (10.24) is applicable for times ¢ > 7 too.

Joint solution of equations (10.19), (10.20) for the harmonic potential
up () was obtained in [Bonch-Osmolovskii and Podgoretskii (1979)]. There-
fore the coefficients a., ay can certainly be found from equations (62) and
(63) of [Bonch-Osmolovskii and Podgoretskii (1979)]. The above analysis
shows that the range of energies and crystal thicknesses, where (10.22),
(10.23) have linear solutions is quite broad; the correct expression for the
coefficient a. follows just from the solution of (10.18) and (10.20)° at the
initial stage of motion (t < 7/72603) ay = 771 at any values of 1263 (com-
pare [Bonch-Osmolovskii and Podgoretskii (1979)]).

To avoid possible misunderstandings, note that harmonic approximation
is not suitable in the cases when even slight nonlinearity of the potential
u is of importance, for example, in the case of resonance action of electro-
magnetic or ultrasonic fields on channeled particles.

Now recall the presence of multiple scattering of a channeled particle by
the fluctuating part of the potential of interaction with the grating. Multi-
ple scattering can be taken into account by introducing into the right-hand

5Recall that at v > 1 the augend on the right-hand side of equation (10.20) may be
neglected.
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side of equation (10.6) of a random force F(7,0,t) describing the events of
inelastic collisions between the particle and the atoms of the crystal lattice.
6 Tt is known [Rytov (1966)] that from the stochastic equation of motion
one may go over to the Einstein-Fokker equation for the probability density

w(p, ) ,t) of ﬁndmg the particle at moment ¢ in the space reglon (7, P+ dp)
with the velocity § which is a part of the interval (9 0+ d@) For the equa-
tion of motion (10.19) with the random force F(g,¢). The Einstein-Fokker
equation has the form

ow 0w 8
— 4+ 60— +

ot op

Z ODirlp , (10.26)

where 'le(ﬁ) = Cik(ﬁ; ﬁ)/2, Cik(ﬁ7 ﬁ,)(g(t—t/) = <]:1(p_: t) X]:}c(p_‘,, t)>; ]:k(ﬁ, t)
are normally distributed random fields with zero mean values (F;(g,¢)) = 0.

Radiation energy losses described by equation (10.20) are of a continu-
ous character. Therefore they may be taken into account upon passing from
equation (10.26) to the equation for the probability density w(ﬁ,@jE,t)
containing in the right-hand part a differential term mdg—lfj” describing the
change in the number of particles in the energy range (F, E4+dFE). However,
for a qualitative analysis of the problem it is possible to use directly the
set of two differential equations (10.20), (10.26) (see, for example, [Bonch-
Osmolovskii and Podgoretskii (1978, 1979)]).

In addition to the electromagnetic radiation, generated by a particle
moving in a potential well u, a channeled particle also emits v quanta
through scattering by a fluctuating part of the interaction potential (”or-
dinary” bremsstrahlung). Large straggling of the radiation energy losses
is typical of such bremsstrahlung with the Bethe-Heitler spectrum of the
form w™! [Baryshevskii et al. (1977); Heitler (1984)]. The quantitative the-
ory in this case should be based on the kinetic equation with the collision
integral describing the bremsstrahlung processes in the right-hand side (see
[Baryshevskii et al. (1977)]). For not very thick crystals (for example, those
of silicon with the thickness of about 1 cm) the usual bremsstrahlung loss
may be ignored.”

6The radius-vector g describes the particle transverse motion in the (z,y) plane. The
velocity ¥ = 6= p-

"In [Vedel’ and Kumakhov (1979)] usual bremsstrahlung loss was taken into account
by introducing into the right-hand side of equation of the type of (10.11) of a term
equal to the magnitude of the average bremsstrahlung energy loss per unit time, i.e.



The Influence of Radiative Transitions on Particles Channeling in Crystals 189

In [Bonch-Osmolovskii and Podgoretskii (1979)] it is shown that when a
charged particle moves in a one-dimensional harmonic potential, it is possi-
ble to obtain from equation of type (10.26) the closed systems of differential
equations for the first- and second-order moments. The given statement,
generally speaking, is a particular case of the general theorem holding for
linear systems [Rytov (1966)].

So, for a harmonic potential, a similar system of closed differential equa-
tions may be obtained from the equation of motion (10.16) with a random
force F (t). Here instead of the system of three equations, we obtain a
closed system of six differential equations for the moments (5*)5(¢)), where
i = di((’:)ﬁ, k,l=0,1,2.

Below we shall dwell on the analysis of the system of differential equa-
tions for two-dimensional moments (5*) 50 (k,1 = 0, 1) which follows from
the equation of motion (10.19) with a random force F(t) and a harmonic
potential . Implying the qualitative analysis of the problem, we assume
here that the random force F' (t) is independent of p, g. For the poten-
tial u = kp?/2 the desired equations are obtained from equations (28) of
[Bonch-Osmolovskii and Podgoretskii (1979)] by a simple substitution of
one-dimensional moments (z2), (#2), (z6) for two-dimensional ones:

6P = 2470
D) = (%)~ 2450 — ()
%(9% = —20%(50) — §<92> +4D. (10.27)

Then, following the similar lines as in [Bonch-Osmolovskii and Podgoretskii
(1979)], supplement equations (10.27) with averaged equation (10.20):

.= 2
4 =40F — ;WBQ2<ﬁQ>. (10.28)

The first term on the right-hand side of (10.28) describes the change in
the particle energy caused by the work done by the Lorentz force, and in
the case v > 1 it may be dropped. The second term, proportional to {p?)
corresponds to the energy emitted by a relativistic harmonic oscillator per
unit time.

If the incursion of the root-mean-square angle of multiple scattering of
the channeled particle during the velocity relaxation time of its transverse

the approximation of the continuous losses was used. Such a method of allowing for
bremsstrahlung loss is erroneous [Baryshevskii et al. (1977)].
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motion in the channel 7 is much greater than the angle 63, then the force

Fi.q in the equation of motion can apparently be neglected. In the model
under consideration this condition satisfies the following inequality

4D > 0} (10.29)

It is also obvious that in the case in question the linear law of motion
is valid for not large times t:

(6%) = 2D(FEot + (6%);
(p%) = (6%)/9%(Eo), (10.30)

suitable providing that e(¢)/FEy < 1. Then according to (10.28), (10.30),
we obtain

22t -1
(1) =70 {1 + T°(<eg> - Dt)} (10.31)
(in perfect agreement with formula (10.24)).
Figure 12 exemplifies the comparison between the numerical solution
of the system of equations (10.27), (10.28) and approximate solution of

(10.30), (10.31).

Figure 12. The root-mean-square angle of multiple scattering and energy
losses as a function of thickness.

Planar channeling of positrons in (110) channel of a silicon single crystal
at (02) = 0 (in the case of planar channeling D should be replaced by 1/2D
in formulae (10.27), (10.30), (10.31)) is considered. As seen from graphs, the
two solutions agree well. The diffusion coefficient D, as well as for protons
[Kagan and Kononets (1973, 1974)], is taken equal to d = kD_pq0t, where
k = 2,/2* (2, is the number of valence electrons); Depaot = F2/4E?Lp;
E% = 4mm?/a; o = 1/137; Lp is the radiation unit of length. Note that in
view of the aforesaid characteristics of kj, and k, the value of the coefficient
k =1/z-2.72 is more precise.

At (6%(0)) = 0 the law of variation of /o which follows from (10.31)
is independent of the particle initial energy, as the diffusion coefficient D ~
Yo 2. Therefore the corresponding (dashed) curve in Fig. 12 is universal
for different initial energies Ey. Dotted curve in Fig. 12 represents the
dependence of /vy (Eo = 10% GeV), used in [Vedel’ and Kumakhov (1979)].
The discrepancy with the exact solution ((#2(0)) = 0)is quite large. As a



The Influence of Radiative Transitions on Particles Channeling in Crystals 191

result, the calculations carried out in the stated work give the incorrect
picture of the evolution of angular distributions y2(6, 6, t)(6y = 0)3

From (10.29) and (10.31) one can easily find the ranges (v,t) where the
approximation (10.30), (10.31) is applicable:

~T _9 O[LRT
LM == < =4/ ;
TN ’YTU ok

T _
N~ € Yrad = A, t < Li(y) = T%n 2, (10.32)

where 4 = m/2ug is the magnitude of the Lorentz factor which corresponds
to the particle energy F, at which the critical angle

ecr = (QUO/E)1/2 = (7’?)_1/2

equals v~ 1, (2(0)) = 163, 6y = nb.,. Note that in the case of planar
channeling of positrons 7 = +/3Lg (here Lg is the radiation logarithm
(Lr ~In(19121/3) [Ter-Mikaelian (1969, 1972)], k = k).
It should also be pointed out that the range (v,¢) determined by the
relations (10.32) is rather large. For example, at n = 1/24y % ~ 10%7.
Further make use of the derived relations for seeking the dechanneling

length Lp. Define Lp as the pathway where (p?(Lp)) = d?/4. As a result,

Lp = (1—n")/2Dyy = Ty(1 = n*) /D, (10.33)

where yp = 297/T. Tt is easy to see that the expression (10.33) holds true
at any 1 € [0,1] in the energy range v < yp. Thus, the motion of charged

particles in a wide range of energies and crystal thicknesses is described by
the approximate solution of (10.30), (10.31).

Consider the diffusion coefficient for channeled particles in more detail.
The coefficient D¢pqot, corresponding to the multiple Coulomb scattering
of ultra-relativistic electrons (positrons) in an amorphous medium is well
known and equal to 1/4 of the root-mean-square angle of particle multiple
scattering per unit time: D.pqor = % [Ter-Mikaelian (1969, 1972)].

In the channeling regime the diffusion coefficient D depends on the par-
ticle trajectory in the channel (the charge sign and the energy of the particle
transverse motion F, ). For example, at channeling of negatively charged
particles moving in the vicinity of nuclei, D) > Dipaor and vice versa, for
positively charged particles moving in the peripheral area of atoms form-
ing a channel, D) < D paot- (Hereinafter the superscripts +(—) will be

8In [Vedel’ and Kumakhov (1979)] in the equation of the the type (10.28) the constant
equal to d,/42 is used instead of the moment (z2), and thus obtained dependence ~(t)
is then substituted into the solution of the kinetic equation of the type (10.26).
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dropped, unless this leads to misunderstanding). The diffusion coefficient
D is normally written as the sum D = D, + D,, with the first term cor-
responding to scattering of channeled particles by a screened potential of
nuclei, and the second one corresponding to scattering by valence electrons
(conduction electrons).

The concrete form of the coefficient D, is based on some model of elec-
tron distribution in the crystal. In the simplest case the distribution of
valence electrons is considered homogeneous. In the case of electron chan-
neling in tubes or layers Dy,. > D.. We note further that Dcpeor is
proportional to the density of nuclei per unit volume of the crystal, so it is
natural to suppose that DSLZZ is approximately equal to the diffusion coef-
ficient in an amorphous medium, where the density of nuclei is the same as
that in tubes or layers, i.e., DSJL)C ~ kpueDehaots Where knuer = (dr/ar)?;
knuwep = dp/ap; ak, ap is the tube radius and the layer width, respec-
tively; dr is the distance between the axes along which the channeled par-
ticle moves. At channeling of positrons in the central part of the channel
D¢ > Dy, and D, as mentioned above, is taken equal to ke Dcpq0t, Where
ke = 2,/2% [Gemmell (1974)]. Hence, the approximate solution of (10.30),
(10.31), as well as expression (10.33) for the dechanneling length Lp are
also suitable for describing electron motion in tubes or in layers.

Discuss the general pattern of channeling of light ultra-relativistic par-
ticles in a harmonic potential we obtained. The domain of applicability of
the classical equation of motion is determined by the following two-sided
inequality:

(40N d)*y = Ymin < 7 < 75 = (d/2X0)7; A = h/me. (10.34)

If the particle Lorentz factor is v < Ypmin, then there are only a few energy
levels in a potential well of height Uy, and, as a consequence, the classical
description of motion proves to be impossible. On the other hand, in the
range v ~ s the quantum effects gain importance [Bonch-Osmolovskii and
Podgoretskii (1978, 1979)].

The energy range, determined by inequalities (10.34) stretches ap-
proximately for four orders of magnitude: from v ~ 102 to v ~ 10°
(d ~ 1Ay ~ 1/2). By the character of motion inside the channel it is
helpful to divide the initial energies of channeled particles into three inter-
vals:

L Ymin <7 < D;

IL. vp <7 < Yrad;

I Yraa < -
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Within interval I the the channeled particle motion is entirely deter-
mined by its multiple inelastic scattering by the atoms of the crystal lattice,
and the change in the particle energy may be neglected. Within interval
IT it is also determined by multiple scattering, but considerably affected by
the radiation energy losses. Within interval III the character of the par-
ticle motion becomes affected by radiation friction (the right-hand side of
equation (10.19)).

For energies defining the limits of the stated intervals the following
relation holds:

Ymin <K YD <K Yrad N’VS(dN 1Aa n~ 1/2)

Therefore interval III, where the due account of the radiative recoil is im-
portant, is practically beyond the applicability of classical description.

At v ~ vg the characteristic frequency of emitted y-quanta is wers ~ E.
But for multiple scattering of particles in the channel, the radiative recoil
would also appear to be important in the energy range v < ~s, when
Werf K E.

For particles channeled either in layers or in tubes [Bonch-Osmolovskii
and Podgoretskii (1978, 1979)], Ymin < 7s(d < 1A, and, hence, in the
cases mentioned above the application of classical description is strongly
restricted.

10.3 Quantum Theory of Channeling Electrons and
Positrons Allowing for Multiple Scattering and Ra-
diation Energy Losses

The most consistent description of the transmission of relativistic charged
particles through crystals may be achieved by means of quantum consider-
ation of the process. This circumstance is due to the fact that in the range
of not very high energies (of the order of several megaelectronvolts) there
are only several levels for a transverse electron motion in a potential well,
while at high energies, the emission of hard photons with the energy of the
order of the particle energy is possible, which makes the account of quan-
tum recoil crucial. If the radiation processes are of no importance, then the
kinetic equations derived by Kagan and Kononetz [Kagan and Kononets
(1973, 1974)] my be used to describe channeling. With the growth of en-
ergy of the particles, radiation is gaining greater importance, and in order
to describe the behavior of electrons and positrons in crystals we have to
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introduce into the kinetic equations the collisional term cause by the photon
radiation [Baryshevsky and Grubich (1979b)].

For detailed treatment of charged particles in the crystal and the elec-
tromagnetic radiation they produce it is necessary to find the density ma-
trix p(t) of the system crystal-particles-photons. The sated density matrix
satisfies the quantum Liouville equation (h =c¢ = 1)

dp
,— = H ots 10.35
? ot [Hiot, p] ( )
with the Hamiltonian
Htot :He+H'y+Hc+‘/ec+Ve—y+Vryc, (1036)

where H., H, are the Hamiltonians of free particles and photons, respec-
tively; H, is the crystal Hamiltonian; V;; are the operators of interaction
between the subsystems ¢ and j (i,5 = e,7, ¢).

It is convenient to obtain first from equation (10.35) the equations de-
scribing the time change of the diagonal non-diagonal parts of the density
matrix [Luttinger and Kohn (1958)]. The equation for the diagonal part of
the density matrix describing the time evolution of a certain small subsys-
tem a (the incident particle, and the y-quanta it produced,) which interacts
with a large subsystem f,has the form

0 . .
% = Z Wo'aPo T Z: Waa!Pa’ (1037)

where po = (spgp)aa is the diagonal matrix element of the matrix spgp;
sps is the trace over the states of subsystem /3 from the full density ma-
trix. The probabilities of transition per unit time are directly connected
with the scattering operator [Berestetsky et al. (1968)]. Their explicit
form for the processes of photon radiation through radiative transitions
and bremsstrahlung was obtained in previous sections. The expressions for
w describing the process of pair production see in (10.4).

Before passing to a detailed treatment of equation (10.37), it is useful
to derive it for the case when the particle interaction with a crystal may be
described in term of the perturbation theory. We shall neglect the influence
of usual bremsstrahlung on the electron and positron behavior.

Equation for the density matrices of the electron p.(t) = spcp(t) and
photon py, = specp(t) subsystems may be found by taking the trace spy.
and spe. of both parts of equation (10.35):

o,
Zape = [HOa pe} + Sp'yc[vvv P]; (1038)
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)
5Py = [Hys py] + speclV, 1, (10.39)

where Hy = He 4+ Vee; Vee = Y, pz’(‘a)nﬁgc is the operator V,. averaged
over the crystal states [Kagan and Kononets (1973)]; p.(o) is the equilib-
rium density matrix of the crystal, diagonal in the representation of the
eigenfunctions of the Hamiltonian H.; H.|c) = Eclc); V.= W 4 Vey + Vi

W = (Vee — Vee) and responsible for inelastic scattering of channeled par-
ticles by the lattice atoms;

[A7B] — AB — BA7 SpaﬁpA _ Z p(xﬂ7(x’,3/Aa/B’7aB’ |’7,C>
aBa’ B

= Me), le;c) = le)|c).
Using the integral representation of equation (10.35)
0
p(t) = S()p(0)ST(t) —i [ drST(r)[V, p(t +7)]S(7), (10.40)
—t

int the second order over the operator V' from (10.38), (10.39) we obtain
the system of integro-differential equations

9pe
ot

+ Z'[I_IOvpe]

= [ drspy[ST(N)[V,S(7)p(t) ST (7)]S(7), V];  (10.41)

—t

dp .
ait’y + i[Hy, py]
0

= [ drspel STV, S()p(t) ST (D] S(7), V], (10.42)
—t
where S(7) = e H'T H' = Hy + H, + H., ty = 0, where it is taken into
account that at the initial time ¢t = 0 of the particle entrance the crystal,
the density matrix

p(0) = pe(0)p, (0)pc(0), (10.43)

where the crystal density matrix p.(0) = sp,ep(0).

Neglect the interaction of y-quanta with the crystal (V.. = 0). let us
also consider that the state of the medium does not change during the
particle transmission through the crystal. As a consequence, we may write

p(t) = pe(0)per (1), (10.44)
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where pe,(t) is the density matrix of the subsystem particles-photons. As

a result
dpe
g+ ilHos pe] = spyeli + spy I (10.45)
0
% +ilHy, py] = spels. (10.46)
The integral
0
IQ = ClT[ei(Ho+Hv)"'[V'e’y7 e_i(HO+H7)Tpe,y(t)ei(HOJ'_H’Y)T]
—t
xeTHHTHRIT, V). (10.47)

The integral I is obtained from the integral in (10.47) upon by replacing
in it the operator H, with H., V., - with W and p.,(t) - with p(t). Note
that as a result of fulfilment of equality sppe(t) = pe(t) the expression
spyeli in (10.45), as expected is equal to the right-hand side of equation
(2.5) in [Kagan and Kononets (1973)].

As in [Kagan and Kononets (1973)], let the lower limit of integration in
the expressions of I; and I tend to —oo . In thus obtained integrals of the
type

0 P
lim eFrldt = +i— + 7o (x) (10.48)
T—oo J_p x
we may neglect the summands with principal values of P/z which lead to
renormalization of the energy spectrum. As a result, the expression sp- s
in the representation of the eigenfunctions of the Hamiltonian Hy has the
form

sp’yjs,e/ _ Z {pe’y,\{ 8”,’7”( )Ve’y 6 'Yvelll'Y,, el’yl [6 (Ee+
T
+E/_EN— )+6<E +E!—E///—E,Y//)]

1" !’ 1" ’ 1’
€ € € 6 € €
—p " VTV V6 (Ben + By — B — B)
11’ 1 1" ’

— e (VT VEN V(B + B + Eon —Ewu)}(l().49)

Due to the symmetry of the integral (10.49) about the operators acting
on vectors |e) and |y), the matrix element sp,ly ' may be obtained from
expression (10.49) be substitution of the subscript e into 7, and the sub-
script 7 into e. The matrix element spycly o<’ appearing in the left-hand
side of equation (10.45) is obtained from (10.49) with the operator V' re-

placed by W, and the subscripts v and ¢ and the density matrix pe,(t) -
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by pe(0)pe(t) (the explicit form of this matrix element see also in [Kagan
and Kononets (1973)], formula (2.7)).

Now use factorization pey = pep for the density matrix pe,(t). Av-
eraging of the equations obtained over times greater in comparison with
the oscillation period of non-diagonal elements p&¢ (t), pZ’Y/ (t) gives the set
of balance equations (10.37). Attenuation of non-diagonal elements of the
density matrix pe(t) due to inelastic scattering of channeled particles by
the crystal lattice is studied in [Kagan and Kononets (1973)].

Thus, equation (10.37) has the form

a e,e 6/
Soe(t) = Y { i +wd e ()
—(wl, +w e ()}, (10.50)
where
ws, =21y w2 pe(0)8(Ee — B + Ee — B (10.51)

is the probability of the transition e — e’ caused by inelastic scattering of
channeled particles by the atoms of the crystal lattice;

/—2772|V6061V )26(Ee — B — w) (10.52)

is the probability of a spontaneous radiative transition e — ¢’ per unit time;
the function p%¢(t) equals the probability density of finding the channeled
particle at moment ¢ in the state |e).

Int the high-energy region it is possible to use impulse approximation
when calculating the probability of inelastic scattering of a channeled par-
ticle by the atoms of the crystal lattice w',. As a result

wil, = 2m8(E — E') Y (V) ’€|2>c = [V )el?), (10.53)
where (A). = 3., p&¢ (0)A%¢¢. The potential energy of the particle in-
teraction with the i-th atom of the crystal lattice

(7) = + , 10.54
V;(7) oAl er—m—wl (10.54)

where 7; = 7; + u; is the radius-vector of the center of inertia of the atom:;
vector 7; determines the equilibrium position of the lattice atom; 7; is the
radius-vector of the j-th electron with respect to the atom center of inertia.
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upon corresponding calculations, we obtain the following expression for
the probability w!Y,, for example, in the case of planar channeling [Bary-
shevsky and Grubich (1979b)]:

2m)36(E — E' ) (g,) TV (¢
Z‘é=(ﬂ) 5(3 )4e4natZJ (q)/2 (4z)
L (¢9)

Teqx

x {Z[F(Tw) ~FFev' () 221~ FY(1 - F')

K (e~ () _ e—w(q>e—w<q’>)} . (10.55)

where J0(g,) = Tl ie(@r) = [ datbar (@) (05 @, = 7, — By
Pp = (Py:02); @ = (02 Bp)s @ = Go + 73 F(@) =F; F' = (¢'); 7= (21 )5
F(q) = 271 [ p(¥)e™*d3r; ep(r) is the electron charge density in the atom;
F(§) is the atomic form-factor; L? is the crystal volume; ny; is the density
of atoms; e~*(®) is the Debye Waller factor.

If the functions ¢(z) = L~1/2e+* are introduced into the integrals J)
instead of the Bloch functlons, then expression (10.55) goes over into the
probability of particle scattering in a disoriented crystal

w

de*n,
Zg’chaot = (271—) 35(E E) q : {

2(1 — F?%)
F22(1— F)%(1 - e—2q2u2)} , (10.56)

where ¢, = pl, — p,. The augend in (10.56), proportional to the atomic
number z is equal to the probability of inelastic scattering of a particle by
electron shell of the atoms; the addend, proportional to 22 is the proba-
bilities of inelastic scattering of the particle by oscillating atoms (photons)
without changing their intrinsic state.

For single crystals with z > 10 in (10.55), (10.56) scattering by photons
of the order of 22 acts the main part. generally speaking, inelastic scat-
tering of a particle by electron shells of the atoms of the order of z may
be neglected. Cooling of the majority of crystals does not lead to consid-
erable suppression of scattering by photons, with the possible exception of
the crystals with a low Debye temperature 0p (0p < 100 K). The total
scattering probability w!¥ = Do w!,. In the case of planar channeling the
particle state in the crystal is descrlbed by a set of quantities (pp, k,n). In
view of the completeness condition of the Bloch functions

=3 T (ge) TV ( /dank )|2e i, (10.57)

n'k’!



The Influence of Radiative Transitions on Particles Channeling in Crystals 199

the integral (10.57) is, in fact, the form factor of the channeled particle.
In an axial channeling regime , we get the following form factor instead of
(10.57)

F(7y) = / @2 plipe (7)o, (10.58)

Next write the total probability of inelastic scattering as a series in terms
of the reciprocal lattice vectors

wl’ =Y "wl (7). (10.59)

In the planar channeling regime summation is made over the vectors 75,
while in the case of axial channeling of a particle, vector 7 in (10.59) equals
TL = (Ta, Ty)- )

At 7 = 0 the form factor F(0) = 1. As a result the first term of series
(10.59) corresponds to the probability of inelastic scattering of a particle
in a disoriented crystal (10.56). The next following terms of the series
determine the correction to w!”, . which depends on the form factor of
the channeled particle. (10.57), (10.58).

The probability of inelastic scattering of a particle in a channeling
regime (10.55) differs from the scattering probability in a disoriented crys-
tal (10.56) not only by the presence of a form factor, (10.57) (which reflects
the peculiarities of the particle transverse motion) , but also by the tem-
perature dependence. Indeed, w' (7,) ~ e~ () As seen, the terms of the
series (10.59) bear the same relationship to the crystal temperature as the
probability of elastic scattering of a particle by the crystal, i.e.,proportional
to e 2% The appearance of the multiplier e=* becomes obvious, if we re-
call that with the increase in the crystal temperature, the probability of
inelastic scattering of electrons moving in tubes or in layers should tend to
the magnitude of inelastic scattering of a particle in a disoriented crystal
(amorphous medium) w’, = w!(0).

Introduce the coefficient

k=14 wl (®)/wlho- (10.60)

70
The magnitude of the sum in (10.60) depends on the sign of the form factor
F(7) which determines the sign of the terms of the series w’V (7) # 0 , and
on the cutoff efficiency of the series > -, w(7), which is defined by the

absolute value of |F(7)| and the multiplier e=*. The sum

Z F(r,) = 2Z/dw\wnk(m)|2 cos(2mlz/dy), (10.61)

T2 70 l
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where 7, = 2nl/d, (I = 0,%1,£2,...). Therefore for particles moving in the
vicinity of the crystallographic axes ( for example, electrons channeled in
layers), for which the effective distribution width |1,k (2)|? is much smaller
than the channel width, the main contribution to the series (10.61) will
come from the summands with [ from 1 to 4. > 1. As a result the
coefficient £ > 1. In the case of channeling of positrons with transversal
energy much smaller than the height of the potential barrier u, the series
(10.61) will be alternating, and the coefficient k will turn out to be less
than unity.

Consider the cutoff of the series (10.59) caused by the temperature factor
e~". The quantity w included in the Debye-Waller factor, equals w(7) =
72(u?) /6 where (u?) is the mean-square displacement of the atoms of the
crystal lattice due to temperature oscillations. Thus, the exponent e~%(7=)
leads to the cutoff of the series (10.59), starting with ez >~ d,/m/(u?).

For most crystals at temperatures T' ~ 300 K the probability of inelastic
scattering of a particle by photons (the term of the order of 2% in (10.55) is
of the same order of magnitude as the probability of scattering a particle
by stationary atoms ~ z2(1 — F')2. Therefore in qualitative consideration
of channeled particle motion in the space of transverse impulses (within
the diffusion approximation) it is possible to apply the diffusion coefficient
D ~ k,D._.paot, where the diffusion coefficient Depqor = %(ES/E)QLE1 de-
scribes the elastic multiple scattering of electrons and positrons in amor-
phous substance.

When channeling electrons in layers k, =~ [, and, hence, D ~
(dp/m\/{u?))Dchaot- The estimate of the magnitude of the diffusion co-
efficient D found here may also be obtained with the help of the following
pictorial presentations. The diffusion coefficient D j40; is proportional to
the density of the nuclei per unit volume of the crystal. Therefore it is
natural to suppose that the coefficient D is approximately equal to the dif-
fusion coefficient in amorphous substance, where the density of the nuclei
is the same as that in layers. As a result, k ~ d,/2+/(u?) [Baryshevsky and
Grubich (1979b)]. As seen, both estimates of the magnitude of & differ by a
numerical factor equal to 2/7. In the case of electron channeling in tubes,
the factor e~ leads to the cutoff of the series (10.59). beginning with
lmaz = [3d? /2w (u?)] (for simplicity,the crystal is assumed to have a simple
cubic lattice, with the axes (100), (010), (001) being considered). Thus,
according to (10.60) for electron channeled in tubes k, ~ 10~ 1d?/(u?).

The number of electrons in the electron core of the crystal lattice atom,
generally speaking, equals some z., < z. Therefore in the general case in
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(10.55) in the summand of the order of z due to inelastic scattering of a
channeled particle by stationary atoms, z should be replaced by z.,. The
remained z — z.., electrons are distributed over the entire volume of the
unit cell of the crystal. Here the scattering probability w!, will include
the the form factor describing the distribution of valence (free) electrons
together with the form factor of the atomic cores 9atoms forming the crystal
unit cell). If the distribution of the valence electrons is supposed to be
homogeneous over the entire volume of the unit cell, then the coefficient
k. corresponding to the contribution to scattering due to elastic collisions
with valence electrons, may be assumed equal to the ration z./2% [Kagan
and Kononets (1973, 1974)], where 2z, = (2 — Z¢or) is the number of valence
electrons. as a result, D = D,, + D, (here D,, = k;,Dchaot, De = keDchaot)-

Obviously, the coefficient k, = (2.72 z)~! offered above for describing
multiple scattering of positrons in the central region of the planar channel
(lz| < dp/2 — a) corresponds to the total concentration of crystal electrons
in the center of the channel, found (”restored”) by the potential u(z). Note
that at large 2 the magnitude of the coefficient is k. = z./22. For example,
for tungsten z/2.72 z, ~ 14.

Using the simplest models, let us consider the evolution of the diagonal
elements of the density matrix of a charged particle p2¢(¢) in a crystal.
Neglecting the change in the total energy FE, we obtain a conventional
balance equation for the probability pg"(t) = 5 \ pe(t) of finding the
particle at moment ¢ at the level n

9pn

n’

where p, = p"(t); Wpn = w3, +w}¥, is the probability of transition
n—n'.

First suppose that inelastic scattering is absent (w!, = 0). Then the

nn

evolution of the function p,(¢) in a crystal is fully determined by radiative
transitions n — n’. In the case of a harmonic potential u(z) the probability
of radiative transitions in dipole approximation w,sm, =277 10 p—1. From
equation (10.62) follows that the mean value of the level number 7(t) =
7(0)e~2/7 where 7 = 3m/kr.. Asseen, the relaxation time of the quantum
and classical oscillators is the same (E7""" ~n ~ e™2/7 ES ~ fpe=2t/T).
The lifetime of the harmonic oscillator 7, = 1/w? , = (3d/2an)3/7/7)

at the level n(n > 1,7 > 1) is much less than the relaxation time 7 =

3m/kre = (3d%/4r)¥(M = N/ Nmazs Mmaz = (d/AN)/V/7, A = m™L v =
E/m, a =1/137, r. = Ao, d is the channel width).
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Here we, certainly, discuss the evolution of only those states of the
channeled particles which correspond to the energy levels lying inside the
potential well formed by crystal planes (axes). An interesting and compli-
cated problem of the mutual kinetics of sub- and over-barrier states of a
channeled particle calls for special study.

The sharper the potential of the channel is the shorter the relaxation
time is in comparison with the relaxation time of a harmonic oscillator 7.
The limiting form of a sharp potential is a rectangular well. Therefore it
seems to be of interest to analyze the radiation kinetics of channeled par-
ticles in both cases. A detailed treatment of particle motion in a harmonic
potential was given in (10.2). Here we shall dwell on the analysis of motion
of a particle channeled in an infinite high rectangular potential well.

The probability of a spontaneous radiative transition of a particle chan-
neled in a rectangular potential well in dipole approximation is (see (10.1))

A 2,12
wi, == (10.63)
yn?—n
where n —n’ = 1,3,5,... . The particle lifetime at this level is given by

(10.4).

Comparison of expressions for the particle lifetime at the level n in a
rectangular and harmonic potential wells show that the quantities 7;, appear
to be of the same order of magnitude. Nevertheless, due to the fact that
in a rectangular potential well far transitions are allowed, unlike those in
ia harmonic potential well, the relaxation time E, in a rectangular well is
Tree € T. As an illustration of the foregoing, consider two examples.

Substitute into the balance equation

Ipn
ot = Z(wn’nl)n’ = Wan' Pn)s (10.64)

n’

the probability (10.63) of spontaneous radiation wfn, calculated in dipole

approximation. Numerical solution of this equation (Fig. 13) was made
for a model example, where at the initial time ¢ = 0 only one level of the
transverse energy of motion is populated

1. n=149;
— b b 1 .
pn(0) {O,n i (10.65)

Figure 13. Time change of the distribution p,(t): a - for short times; b
- for long times.
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The width of the well d = 1.92 A, n,q, = 70, the particle energy E = 1.0
GeV (the given figures ”correspond” to a rectangular potential well for a
positron channeled in the channel (110) of a single crystal of silicon with
the initial transverse energy E | (0) = 12 eV).

At short times of the order of the lifetime at the level ng (¢ ~ 4.5 -
1072 cm) the distribution function p,(t) depends on the parity of the level
number due to the dependence of the probability of radiative transition
w? , in the model of the rectangular well on the initial and final states (see
Fig.13, a). However, with the increase in the time ¢ the difference between
the probabilities p,(t) for the levels n = 2m and n = 2m + 1 is rapidly
smoothed over.

For the times ¢t > 1072 cm the function p,(¢) may, for the sake of
convenience, be approximated by a continuous curve (solid) (Fig.14).

Figure 1. Distribution of p,(t) for large times.

Dotted in Figs. 13 and 14 show the distribution function pg(t) corre-
sponding to the mean value
n(t) =Y npn(t). (10.66)
n=1
The mean value of the level number 7, as well as the rms value 72 and

2 2

the dispersion 02 = n? — 72 as the function of time are given in Figure 15.

Figure 15. Time change of @, 72, o

A high value of dispersion ¢, reaching ? (7,c.) at the depth ¢t ~ T,c.(c =
1), is a characteristic of the particle dynamics in a rectangular potential well
caused by radiative transitions between the levels of the transverse energy
of motion

Further assume that at the initial time (¢ = 0) the beam incident on
the crystal leads to the uniform filling of the entire set of the levels inside
the potential well p,(0) = 1/Nmaz (7 < Nnae). A similar pattern of the
level population is likely to occurs when a wide beam with the angular
divergence 0 ~ 0., is incident on the crystal.

Consider non-radiative transitions. Solving the balance equation
(10.62), we obtain the distributions p,(¢) (Figure 16, dashed curves).

Figure 16. Distribution in a rectangular well for positrons (E = 1.2 GeV
(a) and 20 GeV (b)) with account of multiple scattering (dashed curves) and



204 Channeling, Radiation and Reactions in Crystals under High Energy

ignoring it (solid curves): 1 - initial; 2 - for the plate of thickness 1072 cm;
3 - for the plate of thickness 10™% cm; 4 - for the plate of thickness 0.5 cm

The diffusion coefficient D = 0.16 2,2 2D¢paor (the magnitude of the
coefficient D is close to the experimental one). In Figure 16 it is seen that
multiple scattering prevails over radiative transitions and fully determines
the distribution function p,(t). It is easy to see that the function p,(t) are
described by the solutions of an ordinary diffusion equation

C 2
pult) = pu (0)B(C); B(C) = %2? / 2

Nmax + 1-n
V2Dt

Note that in view of the accepted model (the particle that has quitted
the channel due to non-radiative transition n — n’ (n' > Nua.) never
returns into the channel), the distribution p,(tf) does not preserve time
normalization: Y "7 p,,(t) < 1.

n=1
With the growth of particle energy the probability of non-radiative
w

nn’

¢= (10.67)

transitions w,” , falls rapidly, and the effect of radiative transitions on the
change in the distribution function p,(¢) is growing.

The process of radiative diminution of the transverse momentum of
channeled particles discussed above should be distinguished from from the
process of the damping of the amplitude of transverse oscillations of a chan-
neled particle. The rates of relaxation of the transverse momentum and the
oscillation amplitude are the same only in a harmonic well. In a steep-walled
well relaxation of the transverse momentum is practically not accompanied
by the reduction of the amplitude of transverse oscillations. From this fol-
lows that in spite of a possible decrease in the transverse momentum, the
damping of the oscillation amplitude is not observed: in a steep-walled well
it does not exist, and in a harmonic well the relaxation time is large.

10.4 Pair Production by v-quanta in Crystals Under Chan-
neling Conditions

The cross section for pair production by «y-quanta in crystals which takes
account of possible channeling of electrons and positrons has the form

—_—— 33
do = 2mé(w — B — E)|M'(pL. k. 9)* g i

— 10.68
(2m)SwEE;’ ( )
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where

M1, ) = eV IRy, = evin [ il (e ) @)

wz(?:) is the electron wave function; w(_p is the wave function with negative
energy (—F). The asymptotics of this function should have a form of a
diverging spherical wave. The positron wave function (formed from 1#(_})*)
will the asymptotics of a converging spherical wave as required for a final
particle [Berestetsky et al. (1968)].

Similarly to the pair production in a shielded Coulomb potential, all
characteristics of pair production in crystals may be found from the expres-
sion for the cross section of the bremsstrahlung process, using the transform
(F,w,e*) =» (—E, —w, &). In the expressions for I, I, I5 the transmitted
momentum ¢ = p—+ p; — k. As a result, we have

E - P,

M, =24/ E—lwf {(Ey — E)(gé) — iwd[g x €]} w. (10.69)
Calculation of the trace appearing in (10.68) with due account of polariza-
tion of all the final particle gives [Skripka (1974)]
dPpd®py

do=e?6(w—E — E)\)TrpM' T pM'———
o e (w 1) rp pl 4(277)4(,()EE1’

(10.70)

where

E (w? | 224
TN p M = 4 {2|g|2 —2EE(1 - &) g

2 Re {71266~ 250)(7°C) ) + wErme { [l
~2(5e)(§"0)| (€O} + wERe { [IgCie

—~2(7) (50| (Co) } + S1g(EC + Erdy)ie x &)
e {|gP (Bl + BG)lie x @) -2 (7 (B
+EG)) (g"lie x &) | = 5 [w(1 = CG)lie x &)
(B - E)[ICx &) x [i# x &)
—2Re{e (BS+EC)A) )| [ % 971} -

29
& x

Vector
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=

_ 1 —igF, () e () g3
b=y [T 09,

h= [T e,

Due to mathematical equivalence of (10.70) and (3.27), integration of
(10.70) over the variables of one of the particles (an electron or a positron)
gives, e.g., for the number of produced positrons, the expression coinciding
in form with (3.29):

d®N.+  *E? ReZQ il [1 —exp(zqzsz)}

dEdQe+ N 4mlw By qzif
1-— exp(zqznfL) w? o E oo
P Stk S " 2 1 _
[ ot 2E29 1957 — El( )

2
X (Gns€)(F518) — 5Re { G757 (C0) = 2Gns

+ e {[3s557)(C6) — 2(7.08) (35 0) (Gre

;
+Re {[(G0s37)5° — 2(80s8) (T,
1

+2°"T%(g*nf§;f>(E5+ B G)lie x &)

~ 3R { s B+ BG)lie x 7] =2 (gng (1€
+E51)) gjpli€ x €7] } 2E2[ —(G)liE x &%)

—(E - Ey)[[C x G x [ie x &) + (B — E)( — G)

—2Re{ “(BC+ EiC1)é H zgangjf} (10.71)

In (10.71) the quantity
g"f - 2E(12nf +pzlk11nf +mn\|11nf)
g = Mo | 55, (70,2,

Ig =iNy /S Mt (DY ptbn, 2 (P)d%p, (10.72)

the subscript f refers to electron states, subscripts n and j to positron
ones; K is obtained by reduction of the momentum p’; to the first Brillouin
zone; Ry is the same for the momentum (kJ_ —pL); Br =w—F; Qnj =
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cn(—ﬁl)c;f(—zﬁ) (see the definitions in Chapter II1); g, 5 = pon+p12f —kz;
Pan = /D? — 2men.(E); p1ay = \/p% —2meg., (E1). It should be pointed
out that at pair production, as well as in the process of photon generation
(see (3.29) the oscillations of d?N,+, depending on the thickness L which
enter into (10.71) cannot be ignored in the general case. This is due to
the fact that there are a lot of closely spaced and even degenerate levels in
the structure of transverse levels. For example, at axial channeling there is
level degeneracy in the sign of the projection of the orbital moment, and the
over-barrier states are, in fact, continuous. The contribution of such states

at different energies has not been interrogated yet. For non-degenerate
states the features of 1/q.;¢ and 1/¢., s are not the same, and at anL >1
the interference terms may be discarded.’

If we are not concerned about the polarization of the particles produced,
we should assume that in (10.71) 5 and 51 are zero, and multiply the result
obtained by 4. In consequence, for example, for non-degenerate states we
have

d?>N + 2e2E2L w?
- = Zand(qznf) { |gnf|2

dEdQ.+ 7w oy 2F3
E 2
2 gl = e x iy < Tl f (1073)

According to (10.71) and (10.73) the cross section of a channeled par-
ticle production depends on the photon polarization state. In particular,
the cross section of production of a pair undergoing planar channeling is
different for photons with polarization vector perpendicular (parallel) to
the plane in question. Hence, for such y-quanta a crystal exhibits dichro-
ism. And flux of non-polarized ~-quanta incident on the crystal will get
polarized.

The effect we have considered above will be fundamentally different
from the effect of y-quanta polarization by crystals discussed by Cabibbo
(see, e.g., [Ter-Mikaelian (1969, 1972)]). The effect considered by Cab-
bibo corresponds in a crossed channel with coherent bremsstrahlung; the
effect we have considered corresponds with the formation of polarized pho-
tons through radiative transitions between the levels of channeled particles.
Moreover, e.g., at zero entrance angles with respect to a crystallographic
plane, the effect considered by Cabibbo is zero, whereas in our case it

9Level degeneracy in the axial case affects attenuation of non-diagonal elements of the
density matrix, which should be taken into account when analyzing the bursts of nuclear
reactions discussed in [Kagan and Kononets (1970, 1973, 1974)].
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is non-zero. From the Kramers-Kroning dispersion relations follows that
alongside with absorption, the real parts of refractive indices will be dif-
ferent for different photon polarizations. In other word, the crystal for
high-energy v-quanta appears to be birefringent [Baryshevsky (1979f)].

The general formulae (3.27), (10.70) are also suitable for describing radi-
ation and pair production processes in bent crystals. In particular, in (1.60)
the terms proportional to (7 describe the effect of radiation self-polarization
of spin in bent crystals if the crystal thickness is less than the length of self-
polarization, which was established in [Baryshevsky (1979c)]. The similar-
ity of the formulas for bremsstrahlung and pair formation implies that in
bent crystals even non-polarized «y-quanta will produce polarized electrons
and positrons. Polarized particles, in turn, will produce polarized (having
circular polarization) y-quanta.

10.5 Nuclear Optics of Crystals at High Energies

We studied the formulae describing photon radiation in crystals in
the Sommerfeld-Maue approximation for the wave function of electrons
(positrons) and in the two-wave approximation for the wave function of
~v-quanta produced. The existence of the rotation effect and particle self-
polarization means that in thick crystals we must go beyond the scope of
the Sommerfeld-Maue approximation and use the wave functions, which
are the solution of the Dirac equation including the anomalous magnetic
moment of the electron. Moreover, with the increasing frequency of the
produced photon, when the wave length of a y-quantum appears to be
much shorter than the distance between atoms (nuclei), for wave functions
of a photon /_fgg(F) and other particles (e.g., neutrons) it is possible to
apply the approximation similar to that used for describing electron and
positron channeling (see §2, [Baryshevsky (1979f)]). When a v-quantum
moves at a small angle with respect to the planes (axes) of a single crystal,
one may introduce the averaged over the plane (chain of atoms) dielectric
permittivity. In this regard we may talk about the existence of channel-
ing of y-quanta and any of other particles, (e.g., neutrons, K°-mesons)
[Baryshevsky (1979f)].

It is worthy of mention that the crystal structure of a target is of impact
even at very high energies (e.g., gigaelectronvolt and higher) of y-quanta. In
particular, due to channeling of pairs produced by 7y-quanta, the intensity
of transmitted ~y-quanta demonstrates a pronounced dependence on the
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rotation angle of the crystal with respect to momentum of the incident
beam (see also the previous section). Moreover, even at such high energies
the crystal proves to be optically anisotropic (the birefringence phenomenon
appears) [Baryshevsky (1979f)]. One may theoretically describe this effect,
recalling that when a photon moves in an external field (electric, magnetic),
due to the vacuum polarization by the field, the area occupied by the field is
characterized by the dielectric permittivity tensor of the form [Baier et al.
(1973)]

gij = 0ij + 291 (H)Fi(l)Fj(l) + 292(’<~')Fi(2)Fj(2)7

where FO) = E| + [fiH]; F® = [@F); E, = E — A(AE); @ = k/k
(the definition of functions g; and gs see in [Baier et al. (1973)]). From
this, when a «-quantum moves, for example, at a small angle with respect
to the crystallographic plane, the dielectric permittivity of a crystal for
photons, whose polarization is parallel to the plane differs from that for -
quanta, whose polarization is perpendicular to the crystallographic plane.
As a result, birefringence arises. As seen from estimates, to transform a
linearly polarized photon into a circularly polarized one, the crystal length
of the about 1 cm is sufficient. As a consequence, it is definitely impossible
to neglect the refraction effects in thick crystals even at high energies of
emitted photons. The investigation of birefringence of y-quanta in electric
fields produced by crystallographic planes even now allows studying the
effects of vacuum polarization by external fields.

Let us give a brief review of the theory of photon radiation in crys-
tals, which is not restricted by the Sommerfeld-Maue approximation [Bary-
shevsky (1980c)]. To analyze the photon radiation in crystals, make use of
the general quantum theory of reactions.

Let a plane wave of momentum p and energy E describing the primary
particle be incident on a crystal with the volume V. It is well known that
at the distances larger in comparison with the size of the objects, alongside
with a primary wave, there are spherical waves describing secondary parti-
cles. To find the radiation cross section (the transition probability per unit
time, the number of emitted photons) within the framework of the time-
independent theory of reactions, it is necessary that the wave function of
the primary particle exactly allowing for its interaction with the crystal and
having the asymptotic of the diverging spherical wave ( 1(,+)(r_')) should be
taken as the initial wave function. The wave functions of final particles have
the asymptotic of a converging wave wé‘)(F(AL‘E) (7) for a photon). Using
the general formulae [Berestetsky et al. (1968)], we have the following ex-
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pression for the transition probability per unit time with photon emission
(h=c=1):

- dBp1d3k
AW = 27(B — By — )| M5, F; )] oo

_ ST E 10.74
(2m)SL3EEw’ (10.74)

where M (p1, E,ﬁ) = fd3r¢;{)(F)'y“z/)l(;)(AL%)*(r_’); L? is the normalization

volume; ¢+ are the exact solutions of the Dirac equation; (Af )

./ are the
exact solutions of Maxwell’s equations.

Recall that according to the rules (see [Berestetsky et al. (1968)], p. 285)
the stated wave functions do not include a factor of the type 1/vV2ELS3.
It should be noticed that in view of [Baryshevsky (1976)] a particle in
a medium is affected by an effective potential expresses in terms of the
elastic scattering amplitude. This amplitude is a complex value. At high
energies the contribution to the imaginary part of the amplitude comes
from, e.g., bremsstrahlung and the pair production effect. For this reason
at large energies the functions 1 satisfy the Dirac equation with a complex
potential.

When considering the reactions with polarized particles, it is helpful to
represent the solutions of 1 and A in the form explicitly including final
polarization of particles too. With this aim in view, write (7 = ¢ (7)u and
A, = Bje,, where u is the bispinor characterizing the polarized state of an
electron (positron) in a plane wave outside the crystal; e, - is the photon
polarization vector in the plane wave outside the crystal. As a result the
matrix element

2~ (=) «
M = 15,G upe; G = [ 1y, (IO OBLR. (1075)

Upon introducing polarization density matrices of the initial p and final
p1 electrons and a photon p,, the squared matrix element entering into
(10.74) is:

[M[2 = spp1G* pG” = T ppu,
T = sp p1 G* pG” (10.76)
(T*" is the linear function of the polarization vectors of the initial 5 and

final ¢ electrons (positrons)). Therefore the explicit form of T as a function
of ¢ and (7 may be written as follows:

TH = + G4 B C 4 AR G (10.77)

Carrying out further analysis, we take into account that integration in
(10.75) is made over the he range with linear dimensions exceeding the
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linear dimensions of a crystal by only the magnitude of the vacuum coherent
length of radiation. That is why, when considering the radiation process
in a crystal whose lateral dimensions are much larger than its thickness, in
order to find the wave functions, one may use the wave functions describing
scattering of a plane wave by a crystal plate of finite dimensions. According
to (1.1), (1.2) in this case the time-independent wave function of a particle
(photon) in the area occupied by the crystal is defined by the superposition
of the Bloch functions. Since the Bloch functions may be represented as a
superposition of plane waves (their explicit form see in (1.2)), integration in
(10.75) with respect to the coordinates in the plane parallel to the crystal
surface leads to the J-function describing the law of conservation of the
component of a transmitted momentum, which is parallel to the crystal
surface. The stated §-function together with the energy d-function enables
performing in (10.77) explicit integration with respect to p; (or E) As
a result, we obtain a spectral-angular distribution of emitted photons (or
ejected electrons).

From (10.75)-(10.77) follows that all the amplitudes «, 3, v appearing
in (10.77) will be the squared absolute values of the superposition of the
functions:

efiqznn’l — 1
Cnn/ s
qznn’

where @, is the longitudinal momentum transmitted to the crystal. The
stated superpositions oscillate with the crystal thickness.

According to [Baryshevsky (1976)], when particles and y-quanta move in
crystals, a number of polarization phenomena arise (multi-frequency change
of polarization characteristics of electrons, positrons and y-quanta, depend-
ing on thickness; the effect of anomalous transmission depending on the
external field frequency). All these phenomena also manifest themselves in
the case under study. In other words, T#" and, hence, the intensity and po-
larization characteristics of emitted photons (electrons) are the oscillating
functions of the energy of particles, crystal thickness and the frequency of
the variable external field (sound, electromagnetic) imposed on the crystal.

10.6 Surface Channeling of Charged Particles

The experiments [Mashkova et al. (1970, 1971); Skripka (1974)] studying
refraction of ion beams from crystal surfaces revealed sharp anomalies in the
number of particles refracted by the crystal at rotation of the crystal surface
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about the axes perpendicular to it. The quantum mechanical explanation
of this effect is given below [Baryshevskii and Dubovskaya (1977¢)].

Let a particle beam be incident on the surface of the crystal which
occupies the half-space area z > 0 at the glancing angle a. Choose the
x-axis perpendicular to a certain family of crystallographic planes, and the
y-axis parallel to the stated family of planes. Suppose that particles are
incident at a small angle S with respect to the stated planes. Then the
general view of the wave reflected from the crystal surface can be written
as follows:

w — eil;UF + Z ATei(kow+2ﬂ—7—)x6ik0yy€_ikz(T)Z, (1078)
T
where k(1) = (k2 — (kox +277)% — koy )2 = (K2, + k2, — (kox + 277)%)1/2
is found from the condition of the wave energy conservation (preservation)
at elastic scattering.

When deriving (10.78), it was taken into account that, due to the pe-
riodicity of the potential of the selected family of planes along the x-axis,
the parallel z-component of the momentum of the wave reflected from the
crystal may only differ from the initial value of kg, by the reciprocal lattice
vector 277,

The general solution of the Schrodinger equation describing the particle
motion inside the crystal in the case under study has the form

Y= ch Vni, (z)eFvyeirznha)z (10.79)

where (k) — (. + K8, — (5% (k) — 2B ()i Eu(hn) i
the particle energy in a periodic one-dimensional potential of the fam-
ily of planes in question in the range n as a function of the wave num-
ber kyz; tng, (x) = ﬁeik”unk(x) is the Bloch function. Unlike the case
of mirror reflection of neutrons and «-quanta under diffraction conditions
[Baryshevsky (1976)], in the the case of diffraction of charged particles we
consider the two-wave approximation is not applicable.

Joining (ref(35.1) and (10.79) at the crystal boundary, we may obtain
the following expressions for the amplitudes of refracted waves A, and
coefficients ¢, (k;):

ka - Kn(kz)
Arp =
0 Zka""ﬁn(kI)"'(sn (277‘-[)

‘W <2”l> n <W> (10.80)

a
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2k,
Ao =
Y ) o (ED)
1 27l 27l 2ml
L (zﬂ N ) W () " () ; (10.81)
Q a a a

)

a ) koz + kn(kz) + 0n (2—”1 g

a

ke # koz) =0, (10.82)

where g, (%’“l) satisfies the set of equations of the form

i (P2 =14 X | Sthon )

n’#n | 7#0
x =W (27TT + ﬂ-l) W (27r7' + ﬂ)
Wore (351) g (%)
Wi (38) kox + ko (ko) + 8w (31)
27l 1 27l |2
On (a> = (ko(r) - Fos) g ’Wn (27r7' + a) ; (10.83)
T#0
Integration is made over the unit cell volume €2; [ is the integer part of
koza .
27

W, (2rT) = /eii%munkw(a:)dx.

To clarify the structure of expressions (10.80), (10.81), recall that the ordi-
nary amplitude of a mirror reflected wave has the form
ka — kz

ka + kz ’

where k, = kg,n; n is the refractive index.

Comparison of (10.80) and (10.84) shows that the amplitude of a mirror
reflected wave Ay under channeling conditions can be represented as a su-
perposition of the amplitudes describing mirror reflection from the medium
with the "refractive index” n = K, (k.)/ko. which depends on the number
of the zone where the particle incident on the crystal is captured in it.

Consider the dependence of the reflected wave amplitude on the gliding
angle « and the azimuth angle 8. First note that with the change of the
angle 3, the magnitude of the component of the particle momentum kg, Iso

B= (10.84)



214 Channeling, Radiation and Reactions in Crystals under High Energy

changes, and, hence, the magnitude of the number [. On the other hand,
the coefficients W,,(27l/a) as a function of the number of the range n have
the maximum distribution at n = 2[, which falls rapidly with the increase
in the difference n — 2I, with the distribution W,,(27l/a) getting sharper at
large values of the number [. The features mentioned above result in the
fact that at § exceeding a certain critical angle which has the same order
of magnitude as the Lindhard angle, g, (27l/a) — 1, §,(2wl/a) — 0. As
a consequence, Ag — B, A,y — 0, and we go over to a known mirror
reflection pattern.

Let now the glancing angle of ions « be much greater than the total
mirror reflection angle Y. = Vtumean/E (Umean is the mean energy of
particle-crystal interaction). In this case , if the angle g is greater than the
Lindhard angle, the intensity of reflected particles is small. However, at
B — 0, one may see (see formulae (4.25), (4.26) and the above mentioned
features of the coefficients W, (2nl/a)) that though the amplitude Ay re-
mains small, the amplitudes A,y (Arzo ~ Wo(7)W;(0)) become greater.
As a consequence, one may observe the increase in the intensity of reflected
particles (as 277 /k < 1, for Ar with E = 30 keV k ~ 10*2 ¢cm ™!, the par-
ticles with 7 # 0 move practically in the plane of mirror reflection). The
situation is different when ions fall on the crystal at gliding angle compara-
ble with the angle of total mirror reflection. In this case at 5 greater than
the Lindhard angle the total mirror reflection of the wave is observed, i.e.,
Ag — 1, and A;»p — 0. At the same time at 8 = 0 the amplitude Ag
is small, as the here low energy levels for which vector k, ~ kg, play the
leading part. The amplitude A,xo also vanishes at ko, — 0, due to the
limitation of §,(27l/a). As a result at 8 = 0 the minimum in the inten-
sity of reflected particles should be observed. The qualitative picture given
here is in good agreement with the experimental results [Mashkova et al.
(1970)]. Indeed, the total mirror reflection angle for ions A, with E = 30
keV and the crystal of Cu is about 4°. In the experiment at the gliding
angle o = 10 — 15° and the azimuth angle 5 = 0 the maximum intensity
of scattered particles was observed, at the same time at @« = 5° and =0
the minimum was observed. It should be emphasized that the phenomenon
discussed is of the general character and it should occur for surface channel-
ing of light particles (electrons and positrons). It is natural that electrons
and positrons undergoing surface channeling emit photons due to transi-
tions between the levels (ranges) of transverse motion. Induced transitions
caused by a polarized electromagnetic wave result in particle polarization
(compare (6.2)). Quantum modulation of a reflected beam also emerges.
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