
Advanced Studies in Theoretical Physics
Vol. 13, 2019, no. 1, 23 - 50

HIKARI Ltd, www.m-hikari.com
https://doi.org/10.12988/astp.2019.81248

Measurability. Gravity and Gauge Theories

in Measurable Form at Low and High Energies

Alexander Shalyt-Margolin

Institute for Nuclear Problems, Belarusian State University,
11 Bobruiskaya str., Minsk 220040, Belarus

Copyright c© 2019 Alexander Shalyt-Margolin. This article is distributed under the

Creative Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.

Abstract

In this paper the author formulates a gauge field theory in terms of

the measurability notion introduced in his previous works and per-

forms a comparative analysis of passage to high energies for gravity and

gauge theories. It has been found that measurability in gravity is in

close association with quantum fluctuations of the space-time geome-

try (or at high energies with the ”space-time foam”) introduced by

J.A.Wheeler. It is demonstrated that at low energies E � Ep, in terms

of measurable quantities, we can correctly define the Least Action

Principle and Noether’s Theorem.
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1 Introduction

This paper is a continuation of the previous author’s works devoted to the
subject, especially [1]–[5], but now the author lifts some initial restrictions
(limiting conditions) imposed in the above-mentioned papers. Specifically, it
is not supposed initially that a theory involves some minimal length lmin; we
start from the maximal momentum p = pmax,formula (1) in Section 2 (a cer-
tain maximal bound for the measured momenta), and then from this formula
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we can derive the length ` and the corresponding time τ = `/c. ` is called the
primary length, whereas τ is called the primary time. The whole formalism
developed in [1]–[5] on condition that ` is a minimal length is fully valid for the
case when ` is the primary length. It is important that there is a possibility
to lift the formal requirement for involvement of lmin in the theory just from
the start. The need for replacement of the minimal length lmin by the primary
length ` according to the proposed approach is substantiated in the following
section, see the paragraph titled Explanation.
The principal idea of the above-mentioned works is as follows. Proceeding
from the measurability notion, initially defined in [2] and also in Section 2
of this paper, we can reformulate quantum theory and gravity, removing from
them the abstract infinitesimal variations dt, dxi, dpi, dE, i = 1, ..., 3 and re-
placing them by the quantities depending on the existent energies expressed
in terms of the quantity `. Within the scope of these terms, at low energies a
theory becomes discrete, it is very close to the initial theory formulated in the
continuous space-time. Actually, discreteness is revealed at high energies only.
At the present time these theories are defined in the continuous space-time
paradigm but are associated with serious problems, in particular with the (ul-
traviolet and infrared) divergences.
In [4],[5], within the scope of the measurability concept, gravity has been
studied in the general case at low energies to show that in this case there is a
possibility for the correct transition to high (Planck) energies. Gravity in this
case is understood as General Relativity.
The present paper contains the following recently obtained results.
In terms of the measurability notion, the author formulates a gauge field the-
ory and performs a comparative analysis of the transition to high energies for
gravity and gauge theories. By him, it has been found that the measurability
in gravity is in close association with quantum fluctuations of the space-time
geometry (or at high energies with the ”space-time foam”) introduced by
J.A.Wheeler. It is demonstrated that at low energies E � Ep, in terms of
measurable quantities, the Least Action Principle and Noether’s Theorem
may be defined quite correctly.
The proposed approach is still in progress and, because of this, the author
presents here some part of the earlier obtained results for better understanding:
see Subsection 3.1 [4],[5], and Subsection 5.2 (beginning from this subsection
to the formula (65))[5]. In Section 2 the basic definitions and mathematical
terms used are given which inevitably have intersections with other publica-
tions. As stated above, the section includes some new definitions which are not
at variance with the earlier results but clarify them. Note that in [1]–[3] the
Uncertainty Principle was initially used for definition of the measurability
notion. In subsequent papers (for instance, [4],[5]) the author has found the
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measurability definition without the use of this principle.
All other results in the present work are absolutely new.

2 Measurability Notion. Brief Preliminary In-

formation and Some Important Refinements

In this Section we briefly consider some of the results from [1]–[5] which are
essential for subsequent studies. Without detriment to further consideration,
in the initial definitions we lift some unnecessary restrictions and make impor-
tant specifications.
Presently, many researchers are of the opinion that at very high energies
(Plank’s or trans-Planck’s) the ultraviolet cutoff exists that is determined by
some maximal momentum.
Therefore, it is further assumed that there is a maximal bound for the mea-
surement momenta p = pmax represented as follows:

pmax
.
= p` = h̄/`, (1)

where ` is some small length and τ = `/c is the corresponding time. Let us
call ` the primary length and τ the primary time.
Without loss of generality, we can consider ` and τ at Plank’s level, i.e.
` ∝ lp, τ = κtp, where the numerical constant κ is on the order of 1. Con-
sequently, we have E` ∝ Ep with the corresponding proportionality factor,
where E`

.
= p`c.

Explanation. In the theory under study it is not assumed from the start
that there exists some minimal length lmin and that ` is such. In fact, the
minimal length is defined with the use of Heisenberg’s Uncertainty Principle
(HUP) ∆x ·∆p ≥ 1

2
h̄ or of its generalization to high (Planck) energies – Gen-

eralized Uncertainty Principle (GUP) [7]–[15], for example, of the form [7]

∆x ≥ h̄

∆p
+ α′l2p

∆p

h̄
, (2)

where α′ is a constant on the order of 1. Evidently this formula (2) initially
leads to the minimal length ˜̀ on the order of the Planck length ˜̀ .= 2

√
α′lp.

Besides, other forms of GUP [15] also lead to the minimal length.
But, as is currently known, HUP has been verified and operates well only at low
energies E � Ep. Moreover, there are some serious arguments against GUP as
demonstrated in Section IX of review [15].Because of this, in the present work
validity of this principle is not implied from the start. GUP it is given merely
as an example. As pmax (1) is taken at Planck’s level, it is clear that HUP is
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inapplicable. Taking this into consideration, the existence of a certain minimal
length ˜̀ is not mandatory. So, we start from the primary length ` and the
primary time τ . The whole formalism, developed in [1]–[5] on condition that
` is the minimal length, is valid for the case when ` is the primary length but
now we can lift the formal requirement for involvement of lmin in the theory
from the start.

2.1. The primarily measurable space-time quantities (variations) are un-
derstood as the quantities ∆xi and ∆t taking the form

∆xi = N∆xi`,∆t = N∆tτ, (3)

whereN∆xi , N∆t are integer numbers. Further in the text we use bothN∆xi , N∆t

and the equivalent Nxi , Nt.

2.2. Similarly, the primarily measurable momenta are considered as a
subset of the momenta characterized by the property

pxi
.
= pNxi =

h̄

Nxi`
, (4)

where Nxi is a nonzero integer number and pxi is the momentum corresponding
to the coordinate xi.

2.3. Finally, let us define any physical quantity as primarily or elemen-
tary measurable when its value is consistent with point 2.1,2.2 and formu-
lae (3), (4). Then we consider formula (4) with the addition of the momenta
px0

.
= pN0 = h̄

Nx0`
, where Nx0 is an integer number corresponding to the time

coordinate (N∆t in formula (3)).
For convenience, we denote Primarily Measurable Quantities satisfying
2.1–2.3 in the abbreviated form as PMQ. Also, for the Primarily Measur-
able Momenta we use the abbreviation PMM.

First, we consider the case of Low Energies, i.e. E � E` (same E � Ep.
It is obvious that all the nonzero integer numbers Nxi , Nt (or same Nxµ ;µ =
0, ..., 3) from formulae (3),(4) should satisfy the condition |Nxµ| � 1. It is
clear that all the momenta pi at low energies E � Ep meet the condition
pi = h̄/(Ni`), where |Ni| � 1 but is not necessarily an integer. With regard
for smallness of ` and for the condition |Ni| � 1, we can easily show that the
difference 1/(Ni`)−1/([Ni]`), (h̄/(Ni`)−h̄/([Ni]`)) is negligible and in this way
all momenta in the region of low energies E � Ep may be taken as PMM
with a high accuracy.
It is assumed that a theory we are trying to resolve is a deformation of the
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initial continuous theory.

Remark 2.0
The deformation is understood as an extension of a particular theory by in-
clusion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [6].

Then it should be noted that PMQ is inadequate for studies of the physi-
cal processes. In fact, among PMQ, we have no quantities capable to give the
infinitesimal quantities dxµ, µ = 0, ..., 3 in the limiting transition in a continu-
ous theory.
Therefore, it is reasonable to use notion of Generalized Measurability
We define any physical quantity at all energy scales as generalized measur-
able or, for simplicity, measurable if any of its values may be obtained in
terms of PMQ specified by points 2.1–2.3.
The generalized measurable quantities will be denoted as GMQ.
Note that the space-time quantities

τ

Nt

= pNtc
`2

ch̄

`

Ni

= pNi
`2

h̄
, 1 = 1, ..., 3, (5)

where pNi , pNtc are PMM, up to the fundamental constants, are coincident
with pNi , pNtc and they may be involved at any stage of the calculations but,
evidently, they are not PMQ, but they are GMQ.
So, in the proposed paradigm at low energies E � Ep a set of the PMM is
discrete, and in every measurement of µ = 0, ..., 3 there is the discrete subset
Pxµ ⊂ PMM:

Pxµ
.
= {..., pNxµ−1, pNxµ , pNxµ+1, ...}. (6)

In this case, as compared to the canonical quantum theory, in continuous
space-time we have the following substitution:

∆pµ 7→ dpµ,∆pNxµ
= pNxµ

− pNxµ+1 = pNxµ (Nxµ+1);

∆

∆pµ
7→ ∂

∂pµ
;
∆F(pNxµ

)

∆pµ
=

F(pNxµ
)− F(pNxµ+1)

pNxµ
− pNxµ+1

=
F(pNxµ

)− F(pNxµ+1)

pNxµ (Nxµ+1)

. (7)

And

`

Nxµ

7→ dxµ;

∆

∆Nxµ

7→ ∂

∂xµ
,
∆F(xµ)

∆Nxµ

=
F(xµ + `/Nxµ)− F(xµ)

`/Nxµ

. (8)



28 Alexander Shalyt-Margolin

It is clear that for sufficiently high integer values of |Nxµ|, formulae (7),(8)
reproduce a continuous paradigm in the momentum space to any preassigned
accuracy. However, at low energies E � E` a set of PMM clearly is not a
space. Considering this, the formulae at low energies offer the Correspon-
dence to Continuous Theory (CCT).

It is important to make the following remarks in medias res:

Remark 2.1.
In this way any point {xµ} ∈ M ⊂ R4 and any set of integer numbers high
in absolute values {Nxµ} are correlated with a system of the neighborhoods
for this point (xµ ± `/Nxµ). It is clear that, with an increase in |Nxµ |, the
indicated system converges to the point {xµ}. In this case all the ingredients
of the initial (continuous) theory the partial derivatives including are replaced
by the corresponding finite differences.

Comment*.
Then it should be noted that, as all the experimentally involved energies E are
low, they meet the condition E � E`, specifically for LHC the maximal en-
ergies are ≈ 10TeV = 104GeV , that is by 15 orders of magnitude lower than
the Planck energy ≈ 1019GeV . But since the energy E` is on the order of the
Planck energy E` ∝ Ep, in this case all the numbers Ni for the corresponding
momenta will meet the condition min|Ni| ≈ 1015,i.e., the formula of (4).

Remark 2.2.
It is further assumed that at low energies E � E` (same E � Ep) all
the observable quantities are PMQ.
Because of this, values of the length `/Ni and of the time `/Nt from formula
(5) could not appear in expressions for observable quantities, being involved
only in intermediate calculations, especially at the summation for replacement
of the infinitesimal quantities dt, dxi; i = 1, 2, 3 on passage from a continuous
theory to its measurable variant.

Further it is assumed that at High Energies, E ≈ Ep, PMQ are inade-
quate for studies of the theory at these energies. The assumption follows quite
naturally. For example, if GUP (2) is valid and if ` = ˜̀, then at high energies
formula (2) creates the momenta ∆p(N∆x, GUP ) which are not primarily
measurable [3] –[5]:

∆p
.
= ∆p(N∆x, GUP ) =

h̄

1/2(N∆x +
√
N2

∆x − 1)`
. (9)
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Naturally, formula (9) represents only a particular case of variations in the
generalized measurable momenta at high energies E ≈ Ep. Suppose, we
know that in the general case at high energies E ≈ Ep minimal variations of
momenta are given by a set of the generalized measurable quantities pNxµ ,
where we have the integer numbers Nxµ , |Nxµ| ≈ 1. Then it is reasonable to
assume that minimal variations of ”coordinates” at high energies are given by
the following formula:

lH(pNxµ )
.
=
`2

h̄
pNxµ , (10)

where pNxµ are the above-mentioned generalized measurable momenta at
high energies.

The main target of the author is to form a quantum theory and gravity only
in terms of generalized measurable quantities (or of PMQ).
In conclusion of this Section we summarize the principal results.

Remark 2.3 At low energies far from the Planck energies E � Ep we re-
place the space-time manifold M⊆ R4 by the lattice-like model (denoted by
LattLE{Nxµ}M, where the upper index LE is the abbreviation for ”Low Ener-

gies”), with the nodes taken at the points {xµ} ∈ M so that all the edges
belonging to {xµ} have the size `/Nxµ ,where Nxµ - integers having the prop-
erty |Nxµ| � 1. As the edge lengths `/Nxµ , within a constant factor, are co-
incident with the primarily measurable momenta (formula (5)),the model
LattLE{Nxµ}M is dynamic and dependent on the existing energies. In this case
all the main attributes of a Quantum Theory in the manifold M have their
adequate analogs on the above-mentioned lattice-like model LattLE{Nxµ}M, giv-

ing the low-energy deformation of Quantum Theory in terms of paper [6].

Remark 2.4 At high Planck energies E ∝ Ep, the lattice-like model LattLE{Nxµ}M
is replaced by the lattice-like model LattHE{Nxµ}M (the upper index HE is the

abbreviation for ”High Energies”), the edges with the lengths `/Nxµ are re-
placed by those with the lengths lH(pNxµ ) from formula (10) which, within a
constant factor, are coincident with the generalized measurable momenta
pNxµ , where Nxµ-integer numbers having the property |Nxµ| ≈ 1. In this way
LattHE{Nxµ}M also represents a dynamic model that is dependent on the existing
energies and may be the basis for the construction of a correct variant of the
high-energy deformation in Quantum Theory.

Let us call the lattice-like model LattLE{Nxµ}M from Remark 2.3 the low-

energy `/Nxµ-deformation of space-time manifold M.



30 Alexander Shalyt-Margolin

Correspondingly, let us call the lattice-like model LattHE{Nxµ}M from Remark

2.4 the high-energy lH(pNxµ )-deformation of space-time manifold M.

Remark 2.5
Finally, when at low energies E � Ep we lift restrictions on integrality of Nxµ ,
from formulae (7),(8) it directly follows that in this case we have a continuous
analog of the well-known theory with the only difference: all the used small
quantities become dependent on the existent energies and we can correlate
them.
In this way formula (8) may be written as

dxµ ↔
`

Nxµ

→ `

[Nxµ ]
,

∂

∂xµ
↔ ∆

∆Nxµ

→ ∆

∆[Nxµ ]

(11)

where |Nxµ| � 1 is a sufficiently large number that varies continuously. It is
clear that in formula (11) the first arrow corresponds to the continuous theory
with a specific selection of values of the infinitesimal quantities dxµ. As noted
above, the difference `/Nxµ − `/[Nxµ ] is negligible and hence the second arrow
corresponds to passage from the initial continuous theory to a similar discrete
theory. Of course, formula (7) may be rewritten in the like manner.
In what follows, formula (11) plays a crucial part in derivation of the results
and is greatly important for their understanding.

3 Coordinate Transformations and Poincare

Group in Measurable Case

3.1 General Form of Coordinate Transformations in Mea-

surable Format

According to the results from the previous section, the measurable variant of
gravity at low energies E � Ep should be formulated in terms of the measur-
able space-time quantities `/N∆xµ or primary measurable momenta pN∆xµ

.
Let us consider the case of the random metric gµν = gµν(x) [17],[18], where
x ∈ R4 is some point of the four-dimensional space R4 defined in measurable
terms. Now, any such point x

.
= {xχ} ∈ R4 and any set of integer numbers

{Nxχ} dependent on the point {xχ} with the property |Nxχ| � 1 may be
correlated to the ”bundle” with the base R4 as follows:

BNxχ

.
= {xχ,

`

Nxχ

} 7→ {xχ}. (12)
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It is clear that lim
|Nxχ |→∞

BNxχ = R4.

As distinct from the normal one, the ”bundle” BNxχ is distinguished only by
the fact that the mapping in formula (12) is not continuous (smooth) but dis-
crete in fibers, being continuous in the limit |Nxχ| → ∞.
Then as a canonically measurable prototype of the infinitesimal space-time in-
terval square [17],[18]

ds2(x) = gµν(x)dxµdxν (13)

we take the expression

∆s2
Nxχ

(x)
.
= gµν(x,Nxχ)

`2

NxµNxν

. (14)

Here gµν(x,Nxχ) – metric gµν(x) from formula (13) with the property that
minimal measurable variation of metric gµν(x) in point x has form

∆gµν(x,Nxχ)χ = gµν(x+ `/Nxχ , Nxχ)− gµν(x,Nxχ), (15)

Let us denote by ∆χgµν(x,Nxχ) quantity

∆χgµν(x,Nxχ) =
∆gµν(x,Nxχ)χ

`/Nxχ

. (16)

It is obvious that in the case under study the quantity ∆gµν(x,Nxχ)χ is a
measurable analog for the infinitesimal increment dgµν(x) of the χ-th com-
ponent (dgµν(x))χ in a continuous theory, whereas the quantity ∆χgµν(x,Nxχ)
is a measurable analog of the partial derivative ∂χgµν(x).
In this manner we obtain the (12)-formula induced bundle over the metric
manifold gµν(x):

Bg,Nxχ

.
= gµν(x,Nxχ) 7→ gµν(x). (17)

Referring to formula (5), we can see that (14) may be written in terms of the
primary measurable momenta (pNi , pNt)

.
= pNµ as follows:

∆s2
Nxµ

(x) =
`4

h̄2 gµν(x,Nxχ)pNxµpNxν . (18)

Considering that ` ∝ lP (i.e., ` = κlP ), where κ = const is on the order of 1,
in the general case (18), to within the constant `4/h̄2, we have

∆s2
Nxµ

(x) = gµν(x,Nxχ)pNxµpNxν . (19)

As follows from the previous formulae, the measurable variant of General
Relativity should be defined in the bundle Bg,Nxχ .
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Let us consider any coordinate transformation xµ = xµ (x̄ν) of the space–time
coordinates in continuous space-time. Then we have

dxµ =
∂xµ

∂x̄ν
dx̄ν . (20)

As mentioned at the beginning of this section, in terms of measurable quan-
tities we have the substitution

dxµ 7→ `

N∆xµ

; dx̄ν 7→ `

N̄∆x̄ν

, (21)

where N∆xµ , N̄∆x̄ν – integers (|N∆xµ| � 1, |N̄∆x̄ν | � 1) sufficiently high in
absolute value, and hence in the measurable case (20) is replaced by

`

N∆xµ

= ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

`

N̄∆x̄ν

. (22)

Equivalently, in terms of the primary measurable momenta we have

pN∆xµ
= ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) pN̄∆x̄ν
, (23)

where ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

.
= ∆µν(x

µ, x̄ν , pN∆xµ
, pN̄∆x̄ν

) – correspond-
ing matrix represented in terms of measurable quantities.
It is clear that, in accordance with formula (5), in passage to the limit we get

lim
|N∆xµ |→∞

`

N∆xµ

= dxµ =

= lim
|N̄∆x̄ν |→∞

∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

`

N̄∆x̄ν

=
∂x̄µ

∂xν
dxν . (24)

Equivalently, passage to the limit (24) may be written in terms of the primary
measurable momenta pN∆xµ

, pN̄∆x̄ν
multiplied by the constant `2/h̄.

How we understand formulae (21)–(24)?
The initial (continuous) coordinate transformations xµ = xµ (x̄ν) gives the ma-
trix ∂xµ

∂x̄ν
. Then, for the integers sufficiently high in absolute value N̄∆x̄ν , |N̄∆x̄ν | �

1, we can derive

`

N∆xµ

=
∂xµ

∂x̄ν
`

N̄∆x̄ν

, (25)

where |N∆xµ | � 1 but the numbers for N∆xµ are not necessarily integer.
Then using the formula (11) from Remark 2.5 and substitution of [N∆xµ ] for
N∆xµ in the left-hand side of (25) leads to replacement of the initial matrix
∂xµ

∂x̄ν
by the matrix ∆µν(x

µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) represented in terms of mea-
surable quantities and, finally, to the formula (22). Clearly, for sufficiently
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high |N∆xµ|, |N̄∆x̄ν | , the matrix ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) may be selected

no matter how close to ∂xµ

∂x̄ν
.

Similarly, in the measurable format we can get the formula

dx̄µ =
∂x̄µ

∂xν
dxν . (26)

and correspondingly the matrix ∆̃µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ) instead of the

matrix ∆µν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν ).

Thus, any coordinate transformations may be represented, to however high
accuracy, by the measurable transformation (i.e., written in terms of mea-
surable quantities), where the principal components are the measurable
quantities `/N∆xµ or the primary measurable momenta pN∆xµ

.

3.2 Poincare Invariance and Its Specialities in Measur-

able Consideration

It is obvious that all the derivations for general coordinate transformations and
for a random metric are valid for the Lorentz transformations and Minkowskian
metric.
Actually, according to the preceding subsection, a canonically measurable pro-
totype of the relativistic infinitesimal space-time interval square

ds2 = ηµνdx
µdxν . (27)

is given by

∆s2
Nxχ

(x)
.
= ηµν(x,Nxχ)

`2

NxµNxν

, (28)

where ηµν is the Minkowskian metric

||ηµν || = ||ηµν || = Diag (1,−1,−1,−1) . (29)

Here the integers Nxχ naturally satisfy the condition |Nxχ| � 1, components
of the measurable Minkowskian metric ηµν(x,Nxχ) are ”close” to ηµν ,i.e. we
have

lim
(|Nxχ |)→∞

ηµν(x,Nxχ) = ηµν . (30)

Without loss of generality, we can assume that ηµν(x,Nxχ) = 0, µ 6= ν.
Returning to Subsection 3.1, we suppose that g ∈ LG is a random element of
the Lorentz Group (LG) acting linearly in space time with the coordinates x̄.
g is represented by the matrix (gµν).
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Applying to the case of plane geometry under consideration all argumentations
from Subsection 3.1., specifically Remark 2.5 and hence formulae (25) and
(22), we get the following:

`

N∆xµ

= gµν(x
µ, x̄ν , 1/N∆xµ , 1/N̄∆x̄ν )

`

N̄∆x̄ν

. (31)

Here, with the symbols used, we have N∆xχ
.
= Nxχ , N̄∆x̄χ

.
= N̄x̄χ and

lim
|N̄x̄ν |→∞

gµν(x
µ, x̄ν , 1/Nxµ , 1/N̄x̄ν ) = gµν . (32)

From formula (31) it follows that large integer numbers |N̄x̄ν | generate large
integer |Nxµ|. As follows from (32) and Remark 2.5, at sufficiently large
integers |N̄x̄ν |, |Nxµ|, however the accuracy, we have the equality

gµν(x
µ, x̄ν , 1/Nxµ , 1/N̄x̄ν ) = gµν , (33)

and also the equality

ηµν(x̄, N̄x̄χ)
`2

N̄x̄µN̄x̄ν

= ηµν(x,Nxχ)
`2

NxµNxν

, (34)

where

lim
|N̄x̄χ |→∞

ηµν(x̄, N̄x̄χ) = lim
|Nxχ |→∞

ηµν(x,Nxχ) = ηµν . (35)

In this way we can obtain the relativistic invariance in a measurable form
for flat case, i.e. for Minkowskian space-time.
It is clear that translations in time and space add nothing new to these calcu-
lations and hence all the above arguments are valid for the Poincare group as
well.

Remark 3.1. Any space-time coordinate xµ can express in terms of mea-
surable quantities, no matter how high the accuracy. This trivially follows
from the fact that any real number may be approximated by rational numbers
to the accuracy however high.

Remark 3.2. Note that in this section we have studied only the problem
of actions associated with the group of general coordinate transformations and
the Poincare group in space-time at low energies E � Ep in terms of mea-
surable quantities, without reference to the invariance problem.
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4 Remark on Least Action Principle and Noether’s

Theorem in Measurable Form

Considerations of Section 2 point to the fact that the Least Action Principle
and Noether’s Theorem at low energies E � Ep are valid in a measurable
form with substitution of the measurable analogs defined in Section 2 for all
the components involved in proof of these arguments. For the canonical (con-
tinuous) case we use the notation of Section 3 in [19].
Let ϕ be a set of all the considered fields ϕ

.
= (ϕ1, ϕ2, ...). Then the action S

in the continuous case taking the form

S =
∫
L(ϕ, ∂µϕ)d4x (36)

is replaced by the measurable action Smeas,N

Smeas,{N} =
∑
Lmeas,{N}(ϕ,

∆ϕ

∆Nxµ

)
∏ `

Nxµ

, (37)

where Nxµ – integers with the property |Nxµ | � 1,Lmeas,N–Lagrangian den-
sity of the measurable fields ϕ and of their measurable analogs for partial
derivatives in formula (8) ∆ϕ

∆Nxµ
. This means that all variations of these func-

tions are expressed in terms of only measurable quantities. In the product∏
the index µ takes the values µ = 0, ..., 3, and {N}–collection of all Nxµ ,i.e.

{N} .
= {Nxµ}. Further, where this causes no confusion, for the measurable

quantities corresponding to the set {N} we can equally use both the lower
index {N} and N .
According to Remark 2.1. and Remark 2.5., for the integer numbers Nxµ

sufficiently high in absolute value we, to a high accuracy, have

S = Smeas,{N}. (38)

Then it is assumed that all the considered functions are measurable, i.e.
all variations of these functions are expressed in terms of only measurable
quantities.
In this case the ordinary variations δxµ, δϕ going to zero at the boundary
∂R of the four-dimensional region R are replaced by measurable variations
(δxµ)meas, (δϕ)meas with the same property. The measurable complete field
variation ϕ denoted as (∆ϕ)meas in the first-order approximation for (δxµ)meas
takes the form

(∆ϕ)meas = (δϕ)meas +
∆ϕ

∆Nxµ

(δxµ)meas. (39)
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As follows from Remark 2.5., for Nxµ sufficiently large in absolute value
formula (39) correlates (to a high accuracy) with the well-known formula ∆ϕ
in the case of complete variation in a continuous variant

∆ϕ = δϕ+ (∂µϕ)δxµ. (40)

Similarly, we can find the measurable variation (δSmeas,{N})meas for the action
Smeas,{N} from formula (37), making substitutions relative to the continuous
pattern as in formula (37)

∫
7→
∑

; ∂µ 7→
∆

∆Nxµ

; d4x 7→
∏ `

Nxµ

, ... (41)

and replacing the expression d4x
′

= J(x
′
/x)d4x, where J(x

′
/x) –Jacobian

transformations of x → x
′

= x + δx in the continuous case, by the formula∏ `
N
x
′
µ

= Jmeas(x
′
/x)

∏ `
Nxµ

, where Jmeas(x
′
/x) – ”measurable” Jacobian cor-

responding to the matrix (∆µν) of the transformation x→ x
′
= x+(δx)meas in

measurable consideration from formula (22). With regard to Remark 2.5.,
we can see that in this way in measurable consideration one can reproduce
the results of a continuous picture for the integer numbers Nxµ sufficiently high
in absolute value to any preassigned accuracy.
In this manner, using the infinitesimal quantities dxµ of the form `/Nxµ , where
Nxµ – real numbers sufficiently high in absolute value, and then Remark 2.5,
we can take all the steps to the proof of the Variance Principle (including Gauss
theorem) to any accuracy and obtain the canonical Euler-Lagrange equations
of the measurable form

∂Lmeas,N
∂ϕ

− ∆

∆Nxµ

[
∂Lmeas,N
∂( ∆

∆Nxµ
ϕ)

] = 0. (42)

For the above-mentioned conditions, these equations give very exact approxi-
mation of Euler-Lagrange equations in the continuous paradigm

∂L
∂ϕ
− ∂

∂xµ
[
∂L

∂(∂µϕ)
] = 0. (43)

Noether’s Theorem may be represented in the measurable form in a similar
way.
In this case the energy-momentum tensor Θ

Θµ
ν =

∂L
∂(∂µϕ)

∂νϕ− δµνL (44)
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in the measurable format, similar to (42), takes the form

(Θmeas,N)µν = [
∂Lmeas,N
∂( ∆

∆Nxµ
ϕ)

]
∆

∆Nxν

ϕ− δµνLmeas,N . (45)

If the action S from formula (36) is invariant by some transformation group
G involving xµ and ϕ, then Smeas,{N} from formula (37) for the components of
the set {N} sufficiently large in absolute value are invariant by the action G
at the accuracy however high. This is obvious if we naturally suppose that the
action G for the fields ϕ in the general and in the measurable considerations
is identical, whereas for the coordinates xµ,with regard to Remark 3.1. and
Remark 2.5., the action may be considered identical too for the components
of the set {N} sufficiently large in absolute value.
Proceeding from the paragraph indicated by italics, we can repeat all the
steps of the proof for Noether’s Theorem in the measurable form with the
corresponding substitutions form formula (41).
Then for the ”measurable” currents (Jmeas,N)µν ), to a high accuracy, we have

∆

∆Nt

∑
(Jmeas,N)0

ν

3∏
i=1

`

Nxi

=
∆(Qmeas,N)ν

∆Nt

= 0. (46)

And formula (46)for the components of the set {N} sufficiently high in absolute
value reproduces Noether’s Theorem in the canonical form to any preassigned
accuracy

d

dt

∫
J0
νd

3x =
dQν

dt
= 0. (47)

5 Measurability,Gauge Fields,Gravity and Tran-

sition to High Energies

5.1 Measurability for Gauge Theories at Low Energies

In this section we use the formalism from [19],[20].
It is easily seen that at low energies E � Ep for the gauge theories written
in the measurable form all formula of the canonical (continuous) theory are
valid with the corresponding substitution according to formulae (7),(8),(41).
Indeed, let G – gauge group and {N} .

= {Nxµ}, similar to formulae from the
preceding section,– fixed set of the integers |Nxµ| � 1 sufficiently large in
absolute value.
As G - group of the local internal symmetries of a physical system and the
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definition of measurability refers only to the space-time indexes, we can get
the following correspondences:

W′
µ = U Wµ U

−1 − i

g
(∂µU)U−1 7→W′

µ,{N}
.
=

.
= U Wµ,{N}, U

−1 − i

g
(

∆

∆Nxµ

U)U−1,

Dµ = ∂µ − igWµ 7→ Dµ,{N}
.
=

.
=

∆

∆Nxµ

− igWµ,{N},

Fµν = ∂µWν − ∂νWµ − i g [Wµ,Wν ] 7→ Fµν,{N}
.
=

.
=

∆

∆Nxµ

Wν,{N} −
∆

∆Nxν

Wµ,{N} − i g [Wµ,{N},Wµ,{N}]. (48)

And, similarly, we have

Ψ (iγµDµ −m)Ψ 7→ Ψ{N} (iγµDµ,{N} −m)Ψ{N}. (49)

Here g is a coupling constant,Wµ – space-time components of gauge fields,
Ψ,Ψ–corresponding material fields (in this case fermion),Dµ–covariant deriva-
tive and U - element of the gauge group G.
Passage in formulae (48),(49) from the left- to the right-hand side is associated
with the transition from the canonical (continuous) consideration to the rep-
resentation in terms of measurable quantities for the fixed set {N} .= {Nxµ}.
It is clear that in this case all the transformable quantities in the right-
hand sides of these formulae should depend on {N},that is indicated by the
additional lower index {N}. In a similar way, the ”measurable” metric
gµν(x,Nxχ) ≡ gµν(x, {N}) from formula (14) is dependent on {N}.
However, considering that the energies are low and the numbers |Nxµ | � 1 are
sufficiently high, the above-mentioned relationship is very weak.
As follows from formulae (48),(49) and from the paragraph preceding these for-
mulae, if L – gauge-invariant Lagrangian associated with the left-hand sides of
these formulae, the corresponding Lagrangian given in terms of measurable
quantities Lmeas,{N} is also gauge-invariant by G and we have

L ≈ Lmeas,{N}. (50)

Besides, from the above formulae it follows that all the known relations for the
gauge theory with the group G are valid, to a high accuracy, at low energies
for a measurable variant of this theory on replacement of all basic quantities
in the initial theory by the corresponding quantities with the additional lower
index {N}.
Specifically, the ”gauge” analog Bianchi identity

DρFµν +DµFνρ +DνFρµ = 0 (51)
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in the measurable form is replaced, to a high accuracy, by the identity

Dρ,{N}Fµν,{N} +Dµ,{N}Fνρ,{N} +Dν,{N}Fρµ,{N} = 0. (52)

Obviously, this accuracy is the higher the greater the absolute values of the
numbers from the set {N}.
Similar to the canonical case, formula (51) is equivalent to the Jacoby identity∑

cyclic permutations

[Dρ, [Dµ, Dν ]] = 0, (53)

in the measurable consideration formula (52) to a high accuracy is equivalent
to the measurable form of Jacoby identity∑

cyclic permutations

[Dρ,{N}, [Dµ,{N}, Dν,{N}]] = 0. (54)

5.2 General Relativity in Terms of Measurable Quanti-

ties and Its High-Energy Deformations

At low energies E � Ep for connectivity coefficients in gravity, i.e. Christoffel
symbols, and for the fixed set {N} in his papers [4],[5] the author has derived
their expressions in the measurable form (formula (50) in [5]):

Γαµν(x, {N}) =
1

2
gαβ(x, {N}) (∆νgβµ(x, {N}) + ∆µgνβ(x, {N})−

−∆βgµν(x, {N})). (55)

Here, to make it short, the author denotes the operator ∆/∆Nxχ
from formula

(8) as ∆χ, and Nxχ–corresponding element from the set {N}.
In [4],[5] it is shown that, with the use of (55) in the measurable form, one
can obtain all the base quantities of General Relativity (GR), in particular the
Riemann tensor Rµ

ναβ(x, {N}) and, finally, the measurable form of Einstein
Equations, for short denoted as (EEM) (abbreviation for Einstein Equations
Measurable) (formula (57) in [5]):

Rµν(x, {N})−
1

2
R(x,Nxχ) gµν(x, {N})−

1

2
Λ(x, {N}) gµν(x, {N}) =

= 8π GTµν(x, {N}). (56)

Considering the properties of {N}, for the measurable form of GR the
Bianchi identity may be written, to a high accuracy, as follows:

D̃ρ,{N}R
χ
λµν(x, {N}) + D̃µ,{N}R

χ
λµρ(x, {N}) + D̃ν,{N}R

χ
ναβ(x, {N}) = 0, (57)
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where D̃α,{N} = ∆
∆Nxα

+ Γµνα(x, {N}) and Nxα ∈ {N}.

Thus, at low energies in measurable consideration, as in the canonical case,
there is correlation between gauge theories and gravity.
But, in principle, the understanding of ”high energies” in gravity and in gauge
theories is different. According to the current knowledge, in gravity these en-
ergies are at a level of the Planck energies E ≈ Ep (or same E ≈ E`) which
are associated with origination of the quantum-gravitational effects. In [4],[5],
using the definitions given in Remark 2.0, the author has constructed a high-
energy (Planck) deformation of GR of the form

EEM[Nq]
.
= Rµν(x, {Nq})−

1

2
R(x, {Nq}) gµν(x, {Nq})−

−1

2
Λ(x, {Nq}) gµν(x, {Nq}) =

= 8π GTµν(x, {Nq}). (58)

Here {Nq} .= {Nxχ}, χ = 0, ..., 3 is a set of the integer numbersNxχ the absolute
values of which are close to 1.
The small quantity `/Nxχ = `2

h̄
pNxχ ,where pNxχ is a primarily measurable

momentum and |Nxχ| � 1, at low energies E � E` in the case under study
has its analog at high energies E ≈ E`–the quantity lH(pNxµ ) that is given by
formula (10) in the present paper (or formula (113) in [5]).
As absolute values of the integers Nxµ are small, the quantities lH(pNxµ ) are
varying discretely (for example similar to the denominator in the right-hand
side of formula (9)) and hence the high-energy deformation of GR specified by
EEM[Nq] (formula (58)) is in fact a discrete theory.
It is clear that in this case the limit

pNxχ , (|Nxχ| ≈ 1)
|Nxχ |≈1→|Nxχ |�1

⇒ pNxχ , (|Nxχ| � 1), (59)

where momenta in the right-hand side of formula (59), i.e. pNxχ , (|Nxχ| �
1), are the primarily measurable momenta at low energies E � Ep and
pNxχ , (|Nxχ| ≈ 1) – corresponding generalized measurable momentum from
formula (10), should be valid. Obviously, the momentum from formula (9) for
N∆x

.
= Nxχ satisfies this condition.

Then formula (14) for the canonically measurable prototype of the infinitesimal
space-time interval at low energies E � Ep is replaced by its quantum analog
or the canonically measurable quantum prototype for E ≈ Ep taking the form

∆s2
{N}(x,q)

.
= gµν(x, {N},q)lH(pNxµ )lH(pNxν ) =

`4

h̄2 gµν(x, {N},q)pNxµpNxν .(60)

Here there is no doubt that the numbers Nxµ , Nxν belong to the set {N}, all
the components of this set are integers with small absolute values, pNxχ are the
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generalized measurable momenta at high energies corresponding to formula
(59) and gµν(x, {N},q) meets the condition

gµν(x, {N},q), (|{N}| ≈ 1)
|{N}|≈1→|{N}|�1⇒ gµν(x, {N}), (|{N}| � 1), (61)

where gµν(x, {N}) = gµν(x,Nxχ) is a metric in the measurable form at low
energies (formula (14)).
Thus, at high energies E ≈ Ep we have

lH(pNxχ )
.
=
`2

h̄
pNxχ ; |Nxχ| ≈ 1. (62)

Then by the substitution `/Nxχ 7→ lH(pNxχ ) in formulae (15),(16) we can have
quantum analogs of minimal measurable variations of the metric and of the
partial derivative

∆qgµν(x,Nxχ ,q)χ
.
= gµν(x+ lH(pNxχ ), Nxχ ,q)− gµν(x,Nxχ ,q),

∆χ,qgµν(x,Nxχ ,q)
.
=

∆qgµν(x,Nxχ ,q)χ
lH(pNxχ )

. (63)

Using the substitution in formula (8)

`

Nxµ

7→ lH(pNxµ );
∆

∆Nxµ

7→ ∆q

∆Nxµ ,q

,

∆qF(xµ)

∆Nxµ ,q

=
F (xµ + lH(pNxµ ))− F (xµ)

lH(pNxµ )
(64)

and applying this substitution to all corresponding formulae in the measur-
able format of GR at low energies, we can derive at planck energies E ≈ Ep all
the components high-energy deformation of Einstein Equations in the mea-
surable form EEM[Nq] (58) (or formula (117) in [5])
As a result, we have

lim
E�Ep

EEM[Nq] = EEM or lim
|{Nq}|�1

EEM[Nq] = EEM. (65)

For EEM[Nq], the metrics gµν(x,Nxχ ,q) (formula (60)) represent the solution.

It should be noted that the proposed approach can be considered as a de-
velopment of the idea of quantum fluctuations in the space-time geometry
(”space-time foam”) [21]–[23] but for the case of discrete consideration.
Really, at low energies E � Ep the canonical metric components in a con-
tinuous consideration gµν(x) may be taken as components of the metric in
the measurable form gµν(x,Nxχ) (formula (14) for Nxχ = ∞, i.e. we have
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gµν(x) = gµν(x,∞)). But, as at low energies |Nxχ| � 1, the theory may be
considered continuous to a high accuracy due to Remark 2.5. Then, ex-
panding the quantity gµν(x,Nxχ) into a series in terms of the small parameter
1/Nxχ close to the point gµν(x) and retaining only the zero- or first-order terms
(due to obvious smallness of all the remaining terms), in fact, we arrive at the
formula for fluctuation of the metric g in a region with the size L ([23],formula
(43.29)):

∆g ∼ lp
L
. (66)

Indeed, as lp ∝ `, considering that the energies are low and with due regard for
Remark 2.2, L represents PMQ. Then, setting L = Nxχ` and substituting
it into (66),we get the following:

∆g ∼ lp
L
∼ `

Nxχ`
=

1

Nxχ

. (67)

So, at low energies the indicated quantum fluctuations are very small, actually
being coincident with the basic parameters in the measurable approach (pa-
rameters of the corresponding deformation).
But, as demonstrated by formulae (58)–(64), at high energies E ≈ Ep this is
not the case, and quantum fluctuations
gµν(x, {N},q), (|{N}| ≈ 1) of the metric gµν(x, {N}), (|{N}| � 1) are great.
In this case in the measurable form the notion ”space-time foam” is ab-
solutely adequate because the only restriction imposed on
gµν(x, {N},q), (|{N}| ≈ 1) is (61). It is clear that in this case there is a great
deal of different gµν(x, {N},q), (|{N}| ≈ 1). As the measurable analogs of
Einstein Equations at low energies EEM (56) and at high energies EEM[Nq]
(58), according to the above formulae, are determined by the quantities pNxχ ,
where |Nxχ | � 1, |Nxχ| ≈ 1, respectively, at low energies for the given metric
gµν(x, {N},q), (|{N}| � 1) its quantum fluctuations in the general case are de-
termined by the functions Gµ(Nxµ), µ = 0, ..., 3 which are dependent on integer
values of Nxµ so that

pNxµ
.
=

h̄

Gµ(Nxµ)`
, (68)

and

lim
|Nxµ |→∞

Gµ(Nxµ) = Nxµ . (69)

In [5] at low energies E � Ep for the measurable form of gravity EEM
(56) the author has derived the Least Action Principle and the Lagrangian
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formalism (particular case in the first part of Section 4 in the present paper).
The action for GR in the measurable format can be derived from the action
for the canonical GR in continuous space-time

SEH = − 1

16πG

∫
d4x

√
|g| (R + Λ) (70)

with substitution in formula (41), leading to the ”measurable” action

SEH(Nxχ) = − 1

16πG

∑
∆(Nxχ )Ω

√
|g(Nxχ)| ·

·
(
R(x,Nxχ) + Λ(x,Nxχ)

)
, |Nxχ| � 1, (71)

where ∆(Nxχ )Ω is the volume element in a measurable variant of GR (formula
(44)-(46) in [5]).
It is obvious that at high energies E ≈ Ep, due to real discreteness of the
theory, the Least Action Principle in the general case is no longer valid for
this theory. We can note only the Planck deformation SEH(Nxχ , q) of the
”measurable” action SEH(Nxχ) (71):

SEH(Nxχ ,q)
.
= − 1

16πG

∑
∆(Nxχ ),qΩ

√
|g(Nxχ ,q)| ·

·
(
R(x,Nxχ) + Λ(x,Nxχ ,q)

)
, |Nxχ | ≈ 1, (72)

with substitution of all components in formula (71) in accordance with the
formulae in this subsection.
Of course, in this case the condition

SEH(Nxχ ,q), (|Nxχ| ≈ 1)
|Nxχ |≈1→|Nxχ |�1

⇒ SEH(Nxχ), (|Nxχ| � 1) (73)

must be fulfilled. It should be noted that the above-mentioned results may be
applied for the derivation of a measurable variant of gravitational thermo-
dynamics for horizon spaces and Schwarzschild’s black holes [3].

5.3 Gauge Theories in Measurable Consideration and

Transition to High Energies

We assume that at high energies E (close to the Planck energy E ≈ Ep (or
same E ≈ E`) space-time is always curved. Because of this, we should con-
sider three different possibilities.

5.3.1. Low energies E � Ep and flat space-time.
In the well-known Quantum Field Theory (QFT) [20],[19] and, specifically, in
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its part used for the collider computations, in the general case space-time is
assumed to be flat, i.e. to be Minkowskian.
Besides, as noted in Comment*, actually all the energies considered experi-
mentally meet the condition E � Ep and hence by virtue of Remark 2.2 in
measurable consideration all observable quantities are PMQ.
In this case we have a discrete QFT that is almost-continuous due to Remark
2.5. As such a theory in the momentum representation has the upper limit
cut-off, it is not Lorentz-invariant from the start. In the proposed approach
the wave function is considered separately at high energies E ≈ Ep and at low
energies E � Ep, with the imposed restriction that the first function is a high-
energy deformation of the second function [2]. In all the works of other authors
the wave function is common for all the energy scales. But, considering the
assumption in the beginning of this subsection, this is impossible because the
indicated functions belong to spaces of different geometries: curved and flat.
It is clear that the above-mentioned discrete (almost-continuous) (QFT), with
a cut-off at a certain upper limit of the momenta which are considerably more
lower than the Planck, should be ultraviolet-finite. In this case passage to
higher energies means going from the momenta pN , |N | � 1 to the momenta
pN ′ , |N | > |N ′ | � 1 and, vice versa, passage to lower energies is going in the
last equality from the integers N

′
to the integers N .

For further resolution of the indicated QFT, along with formula (41), we should
”translate” correctly the mathematical apparatus of the Dirac δ-function into
the measurable representation.
Note that at the present time there is a strong belief that Lorentz-invariance
is violated on passage to higher energies even for the particular quantum-field
models in the continuous space-time paradigm (for example, [27]).

5.3.2. Low energies E � Ep and curved space-time.
In this case it is assumed that a measurable Lagrangian, containing a quan-
tum gauge field in the measurable form Wµ,{N} from formula (48) and the
terms including material fields Ψ{N} (formula (49)),is considered in the space-
time geometry generated by the measurable metric gαβ(x, {N}).
Such consideration corresponds to the semiclassical approximation in the canon-
ical (continuous) form. In fact, as E � Ep, in this case in continuous space-
time gravity can be considered as classical, that is equivalent to the semi-
classical approximation–”quantized material fields in the classical space-time
geometry”.
Since the energies are low, using Remark 2.5, in this case we can take a dis-
crete QFT as an (almost-continuous) theory with a cut-off at a certain upper
level of the momenta which are significantly lower than the Planck momen-
tum and with substitution of formula (41) in the corresponding formulae of a



Measurability. Gravity and gauge theories 45

quantum theory in curved space-time [17],[28], considering substitution of the
measurable metric gαβ(x, {N}) for the metric gαβ(x).
Nevertheless, the differences, as compared to the continuous theory, really ex-
ist and are associated with selection of Nxχ ∈ {N}. The selection should be
determined by the energies for which the theory is considered.
In continuous consideration, with the abstract infinitesimal quantities
dxχ, dpi, dE, χ = 0, ...3; i = 1, ...3, the theory fails to ”sense” specific energies.
In the measurable form this is not the case due to the theory construction per
se. Further studies are needed to find the corresponding inferences for differ-
ent problems in curved space-time (for example, properties of pure and mixed
states, entanglement depending on dynamics of the elements {N}), specifically
for solution of the Information Paradox Problem (IPP)[29].

5.3.3. High energies E ≈ Ep and curved space-time.
This is a pure quantum-gravitational phase. When the material field La-
grangian is studied in this phase, in the measurable form, in accordance with
the above formulae, we resolve a pure discrete theory. The geometry in such a
”space” arises from the metrics satisfying the equation EEM[Nq] (58). In this
case all ”minimal” variations for gauge fields and material fields in the coor-
dinate and momentum representations should be taken from formulae for the
corresponding GMQ,i.e. from the expressions for p{N}, lH(p{N}), |{N}| ≈ 1
with regard to formulae (68),(69).
Then in the low-energy limit we have the case 5.3.2. And, if the geometry
determined by the metric gαβ(x, {N}) is asymptotically flat, for very great
|{N}| we have the case 5.3.1.

6 Conclusion

6.1. In the proposed approach the mathematical apparatus of the well-known
theories in continuous space-time based on the use of the abstract infinites-
imal quantities dxµ, dpi, dE is replaced by the apparatus based on the mea-
surability notion and involving the ordered small quantities dependent on
the existent energies. All small space-time variations in the indicated theories
are generated by the momenta, (primarily measurable at low energies and
generalized measurable at high energies). Considering the involvement of
the primary length ` ∝ lp, in this case the initial theory becomes discrete but
at low energies, far from the Planck energy E � Ep, it is very close to the
initial theory in continuous space-time. Real discreteness is revealed at high
energies E � Ep. Such an approach enables one to study the theories (specif-
ically, QFT and gravity) in the same terms at all the energy scales.



46 Alexander Shalyt-Margolin

6.2. In terms of the measurability notion the author has conducted a com-
parative analysis of passage to high energies for gravity and gauge theories.
It has been shown that measurability in gravity is closely associated with
quantum fluctuations of the space-time geometry (or at high energies of the
”space-time foam”) introduced by J.A.Wheeler.

6.3. Of course, the words ”very close” given in bold type are not mean-
ing coincident. In the last paragraph of 5.3.2 it is noted that measurabil-
ity offers additional possibilities for solution of the known problems in curved
space-time.
Because of this, it should be noted that in [5] the author first analyzed the
potentialities of using measurability to avoid pathological solutions in GR,
for example Closed Timelike Curves (CTC) [30]–[33].

6.4. In the proposed approach, within the scope of the measurability no-
tion, the terms classical and quantum considerations common for the con-
tinuous space-time paradigm, generally speaking, lose their initial meaning.
Indeed, the use of these terms is justified only at low energies E � Ep but
at these energies all minimal variations in the coordinate space take the form
`/{N}, |{N}| � 1 and ` in its definition has all the three fundamental con-
stants including h̄, because ` ∝ lp. On the other hand, due to the condition
|{N}| � 1, a quantum nature of the variations `/{N} is not felt. The same is
true for the momentum representation.
In fact, in the proposed approach the classical consideration is associated with
the limiting transition |{N}| → ∞. However, as shown in [5], for real physical
systems at low energies E � Ep is always |{N}| <∞ and we have

N∗ ≥ |{N}| ≥ N∗ � 1, (74)

where N∗, N
∗ – some lower and upper bounds.

As noted in 5.3.1, in this case passage to higher or to lower energies means
going to consideration of a theory with higher or lower absolute values of the
numbers {N}, respectively, compared to the initial ones.
Evidently that for the correctness of the theory it is necessary that at low en-
ergies E � Ep all results should not depend on the choice pmax.

6.5. From formula (65) it follows that

Λ(x, {Nq}), (|{Nq}| ≈ 1)
|{Nq}|≈1→|{N}|�1⇒ Λ(x, {N}), (|{N}| � 1), (75)

where the right side of (75) is a dynamic cosmological term in the measur-
able form at low energies E � Ep. According to the results of Subsection 5.2,
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Λ(x, {N}) has little differences from the cosmological constant Λ in continuous
consideration.
In his earlier works [34],[35] the author uses other methods, within the holo-
graphic principle validity, to show that

Λ(x, {N})
Λ(x, {Nq})

≈ 10−123. (76)

It should be noted that Λ(x, {N}) , to a high accuracy, agrees with the exper-
imental cosmological constant.
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