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Abstract

The first part of this paper is devoted to analysis of the applicability
limit of Einstein’s Equivalence Principle (EP). It is noted that a natural
applicability limit of this Principle, associated with the development of
quantum-gravitational effects at Planck’s scales, is absolute, its more
accurate estimation being dependent on the processes under study and
on the sizes of the corresponding particles. It is shown that, neglecting
the applicability limit of EP, one can obtain senseless results on esti-
mation of the relevant quantities within the scope of the well-known
Quantum Field Theory (QFT). Besides, such neglect may be respon-
sible for ultraviolet divergences in this Theory. In the second part of
the work the author presents the general principles and mathematical
apparatus for framing QFT in terms of the measurability notion in-
troduced by the author earlier. In such QFT in the general case it is
expedient to indicate the energy regions, where EP is valid and where
it loses its force, in an effort to find a natural solution of the ultraviolet
divergences problem in this theory that at low energies is very close to
the initial well-known QFT.
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1 Introduction

This paper is a continuation of previous works by the author [1]-[6]. The first
part is devoted to analysis of the applicability limit of Einstein’s Equivalence
Principle (EP). It is noted that a natural applicability limit of this Principle,
associated with the development of quantum-gravitational effects at Planck’s
scales, is absolute, its more accurate estimation being dependent on the pro-
cesses under study and on the sizes of the corresponding particles. It is shown
that, neglecting the applicability limit of EP, one can obtain senseless results
on estimation of the relevant quantities within the scope of the well-known
Quantum Field Theory (QFT), in particular, of the cosmological term A in
General Relativity (GR). Besides, neglect of the applicability limit of EP may
be responsible for ultraviolet divergences in OFT.

The idea that all the processes studied in QFT should be considered separately
in two different energy ranges

E <K E,
and
E =~ E, (1)

is substantiated. Then the results earlier obtained by the author [1]-[6] are
used. However now the author lifts some initial restrictions (limiting condi-
tions) imposed in the above-mentioned papers. Specifically, it is not supposed
initially that a theory involves some minimal length [,,;,; we start from the
maximal momentum p = pyq,formula (10) in Section 4 (a certain maximal
bound for the measured momenta), and then from this formula we can derive
the length ¢ and the corresponding time 7 = ¢/c. ( is called the primary
length, whereas 7 is called the primary time. The whole formalism developed
in [1]-[6] on condition that ¢ is a minimal length is fully valid for the case when
¢ is the primary length. It is important that there is a possibility to lift the
formal requirement for involvement of ,,;, in the theory just from the start.
The need for replacement of the minimal length [,,,;,, by the primary length ¢
according to the proposed approach is substantiated in the Section 4 (see the
paragraph titled Explanation).

The principal idea of the above-mentioned works is as follows. Proceeding
from the measurability notion, initially defined in [2] and also in Section 4
of this paper, we can reformulate quantum theory and gravity, removing from
them the abstract infinitesimal variations dt, dx;,dp;,dE,i = 1,...,3 and re-
placing them by the quantities depending on the existent energies expressed
in terms of the quantity ¢. Within the scope of these terms, at low energies a
theory becomes discrete, it is very close to the initial theory formulated in the
continuous space-time. Actually, discreteness is revealed at high energies only.
At the present time these theories are defined in the continuous space-time
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paradigm but are associated with serious problems, in particular with the (ul-
traviolet and infrared) divergences

In Section 4 the primary elements of the mathematical apparatus based on
this notion are recollected and elucidated.

Finally, in Sections 5,6 the general principles of framing QFT in terms of the
measurability notion are given. It is noted that, from the viewpoint of the
mathematical apparatus applicability, the condition (1) is quite natural for
”measurable” QFT. It is shown that passage to higher or lower energies
in such QFT is also naturally formulated in terms of the basic (numerical)
parameters of the measurability notion. The main task is to convert the
mathematical apparatus of the well-known QFT to continuous space-time in
terms of measurable quantities. Provided this task be solved adequately, we

should have the possibility to solve successfully the ultraviolet divergence in
”measurable” QFT and hence in QFT itself.

2 Equivalence Principle Applicability Bound-
ary in Canonical Theory

Einstein’s Equivalence Principle (EP) underlies not only General Relativity
(GR) [7]-[9] but also the fundamental physics as a whole. In the standard
formulation it is as follows: ([9],p.68):

“at every space-time point in an arbitrary gravitational field it is possible to
choose a locally inertional coordinate system such that,within a suffi-
ciently small region of the point in question, the laws of nature take the same
form as in accelerated Cartesian coordinate systems in the absence of gravita-
tion”.

Then in ([9],p.68) ”...There is also a question, how small is ”sufficiently
small”. Roughly speaking, we mean that the region must be small enough so
that gravitational field in sensible constant throughout it...”.

However, the statement ” sufficiently small” is associated with another prob-
lem. Indeed, let T be a certain point of the space-time manifold M (i.e.
7 € M) with the geometry given by the metric g,,(Z). Next, in accordance
with EP, there is some sufficiently small region V, of the point = with char-
acteristic linear size r so that, within V, , we have

9w (T) = 1y (T), (2)

where 7, (%) is Minkowskian metric.

In essence, sufficiently small V, means that the region V', for which T €
V., C V, with 7' < r (here r,7’ are characteristic spatial sizes of V, and
V! correspondingly), satisfies (2) as well. In this way we can construct the



136 Alexander Shalyt-Margolin

sequence

.. C Vrﬂ C VT/ cV,,
L<r o <r<r (3)

The problem arises, is there any lower limit for the sequence in formula (3)?
The answer is positive. Currently, there is no doubt that at very high ener-
gies (on the order of Plancks energies F' ~ E,), i.e. on Plancks scales, [ ~ [,
quantum fluctuations of any metric g, (%) are so high that in this case the
geometry determined by g¢,, () is replaced by the ”geometry” following from
space-time foam that is defined by great quantum fluctuations of g,,(z).i.e.
by the characteristic spatial sizes of the quantum-gravitational region (for ex-
ample, [10]-[15]). The above-mentioned geometry is drastically differing from
the locally smooth geometry of continuous space-time and EP in it is no longer
valid [16]-[23].

From this it follows that the region V.3 with the characteristic spatial size
7 =~ [, (and hence with the temporal size £ ~ t,) is the lower (approximate)
limit for the sequence in (3).

It is difficult to find the exact lower limit for the sequence in formula (3)-it
seems to be dependent on the processes under study. Specifically, when the in-
volved particles are considered to be point, their dimensions may be neglected
in a definition of the EP applicability limit. When the characteristic spatial
dimension of a particle is r, the lower limit of the sequence from formula (3)
seems to be given by the region V.. containing the above-mentioned particle
with the characteristic dimensions r’ > r, i.e. the space EP applicability limit
should always be greater than dimensions of the particles considered in this
region. By the present time, it is known that spatial dimensions of gauge
bosons, quarks, and leptons within the limiting accuracy of the conducted
measurements < 107'¥m. Because of this, the condition r’ > 107'®m must be
fulfilled.In addition, the radius of interaction of particles r;,; must be taken
into account in quantum theory. And this fact also imposes a restriction on
considering concrete processes in quantum theory. However, the interactions
radii of all known processes lie in the energy scales £ < E,,.

Therefore, it is assumed that the Equivalence Principle is valid for the locally
smooth space-time and this suggests that all the energies E of the particles in
the most general form meet the condition

E< E, (4)

Then, if not stipulated otherwise, we can assume that the condition (4) is
valid.
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3 Quantum Field Theory,Ultraviolet Divergences
and Cosmological Term Estimation in QFT

The canonical quantum field theory (QFT) is a local theory considered in con-
tinuous space-time with a plane geometry, i.e with the Minkowskian metric
n(z) [24]- [26]

Actually, any interaction introduces some disturbances, introducing an ad-
ditional local (little) curvature into the initially flat Minkowskian space M.
Then the metric 7,, (%) is replaced by the metric 1,,(Z) + 0,,(T), where the
increment o0, () is small. But, when it is assumed that EP is valid, the in-
crement 0, () in the local theory has no important role and, in a fairly small
neighborhood of the point Z, formula (2) is valid.

Within the scope of the canonical QFT, the process of passage to more higher
energies without a change in the local curvature has no limits [24]-[26], just
this fact is the reason for ultraviolet divergences in QFT. But as follows from
the previous section, this is not the case. Actually, on passage to the Planck
energies £ ~ E,, (Planck scales [ ~ [,,), the space in the Planck neighborhood
Vi1 of the point T one cannot consider flat even locally and in this case (as
noted above) EP is not valid.

Then we introduce the following assumption:

Assumption 3.1

In the canonical QFT in calculations of the quantities it is wrong to sum (or
same consider within a single sum) the contributions corresponding to space-
time manifolds with locally nonzero or zero curvatures since these contributions
are associated with different processes: (1) with the existence of a gravitational
field that, in principle, can hardly be excluded; (2) in the absence of a gravita-
tional field.

From the start, we can isolate the case when EP is valid (at sufficiently low
energies, specifically satisfying the condition (4)) from the cases when EP be-
comes invalid (for example, Planck energies £ ~ E,,).

Let us consider a widely known example when Assumption 3.1 is not fulfilled
leading to the senseless results.

In his popular lectures [27] at the Cornell University Steven Weinberg consid-
ered an example of calculating, within the scope of QFT, the expected value
for the vacuum energy density < p > that is proportional to the cosmological
term A. To this end, zero-point energies of all normal modes of some field with
the mass m are summed up to the wave number cutoff A > m for the selected
normalization i = ¢ =1 (formula (3.5) in [27]):

A 4k2dk 1 X
~ — k2 2~ )
=r= /0 2np 2V T o (5)
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Assuming, similar to [27], that GR is valid at all the energy scales up to the
Planck’s, we have the cutoff A ~ (87G)~'/2? and hence (formula (3.6) in [27])
leads to the following result:

< p>x2-10"GeV?, (6)

that by 108 orders of magnitude differs from the well-known experimental
value for the vacuum energy density

< Pexp >= 107 ¥g/em?® o 1077 GeV . (7)

Here GG is a gravitational constant.

It is clear that in this case Assumption 3.1 fails as Planck’s scales and those
close to them at lower energies are included into consideration. By the author’s
opinion, this is impermissible because for Planck’s scales the quantum rather
than classical gravity is true and the space even in a small neighborhood of the
point is hardly flat. But in formula (5) for the cutoff A ~ (87G)~'/2 this fact
is not included because all calculations in the canonical QFT [26] are valid for
the locally flat space and hence (5) in this case leads to senseless results.

Of particular interest is the inverse problem: if the experimental value of
the vacuum energy density < pe,, > is known from (7), substituting it into
formula (5), we can estimate A, at the upper limit of integration by the
above formula

Aeap drk2dk 1
eap >~ —— - Vk? 2 107 GeVt,
< Pexp > /o (27)? 2\/ +m 0~*'Ge (8)

Note that A.,;, may be found in other way. Denoting by Ayy the quantity
~ (87G)~Y2 from formula (5), corresponding to the cutoff at Planck’s scale
~ 1,6 - 10733cm that is taken as the ultraviolet cutoff, denoting the required
quantity < p > by < pyy >, by A;r denoting the quantity from the same
formula, that corresponds to the cutoff at the scale of a visible part of the
Universe ~ 10¥cm, and the corresponding quantity < p > denoting as < p;p >
(infrared limit), in accordance with [28],[29], we obtain

< Peap >= /< puv >< prr >. 9)

Obviously, A, derived from formulae (8), (9) satisfies the condition (4) and
in this case Assumption 3.1 is fulfilled.

Remark 3.2

In this work we, in fact, consider two extremes:
a)low energies E < E,, and

b)very high (essentially maximal) energies E ~ E,,.
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Then it should be noted that, as all the experimentally involved energies E
are low, they satisfy condition a). Specifically, for LHC mazimal energies are
~ 10TeV = 10*GeV, that is by 15 orders of magnitude lower than the Planck
energy ~ 10¥GeV .

Moreover, the characteristic energy scales of all fundamental interactions also
satisfy condition a). Indeed, in the case of strong interactions this scale is
Agep ~ 200MeV; for electroweak interactions this scale is determined by
the vacuum average of a Higgs boson and equals v ~ 246GeV ; finally, the
scale of the (Grand Unification Theory (GUT)) Mgyt lies in the range of
~ 10%GeV — —10%GeV . It is obvious that all the above figures satisfy condi-
tion a).

Thus, only the expected characteristic enerqy scale of quantum gravity satisfies
condition b).

From Remark 3.2 it directly follows that even very high energies arising on
unification of all the interaction types Mgyt ~ 1014GeV — ~ 105GeV (except
of gravitational), Satisfy the condition (4).

At the same time, it is clear that the requirement of the Lorentz-invariant
QFT, due to the action of Lorentz boost (or same hyperbolic rotations) (for-
mula (3) in [8]), results in however high momenta and energies. But it has been
demonstrated that unlimited growth of the momenta and energies is impossible
because in this case we fall within the energy region, where the conventional
quantum field theory [24]- [26] is invalid.

Note that at the present time there are experimental indications that Lorentz-
invariance is violated in QFT on passage to higher energies (for example, [30]).
Proceeding from the above, the requirement for Lorentz-invariance of QFT is
possible only within the scope of the condition (4).

4 Measurability Notion.Some Clarifications and
Additions

In this Section we briefly consider some of the results from [1]-[6] which are
necessary for further studies. Without detriment to further consideration, in
the initial definitions we lift some unnecessary restrictions and make important
specifications.

Presently, many researchers are of the opinion that at very high energies
(Plank’s or trans-Planck’s) the ultraviolet cutoff exists that is determined by
some maximal momentum.

Therefore, it is further assumed that there is a maximal bound for the mea-
surement momenta p = P represented as follows:

Pmax = Pe = h/é, (10)
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where £ is some small length and 7 = ¢/c is the corresponding time. Let us
call £ the primary length and 7 the primary time.

Without loss of generality, we can consider ¢ and 7 at Plank’s level, i.e.
¢ < l,,7 = kt,, where the numerical constant s is on the order of 1. Con-
sequently, we have E, o< E, with the corresponding proportionality factor,
where E, = pyc.

Explanation. In the theory under study it is not assumed from the start
that there exists some minimal length [,,;, and that ¢ is such. In fact, the
minimal length is defined with the use of Heisenberg’s Uncertainty Principle
(HUP) Az - Ap > 1% or of its generalization to high (Planck) energies — Gen-
eralized Uncertainty Principle (GUP) [32]-[40], for example, of the form [32]
h 12 Ap

AzZAijalph’ (11)
where o is a constant on the order of 1. Evidently this formula (11) initially
leads to the minimal length ¢ on the order of the Planck length (= 2/d'l,,
Besides, other forms of GUP [40] also lead to the minimal length.
But, as is currently known, HUP has been verified and operates well only at low
energies I/’ < E,. Moreover, there are some serious arguments against GUP as
demonstrated in Section IX of review [40].Because of this, in the present work
validity of this principle is not implied from the start. GUP it is given merely
as an example. AS Dy, (10) is taken at Planck’s level, it is clear that HUP is
inapplicable. Taking this into consideration, the existence of a certain minimal
length ¢ is not mandatory. So, we start from the primary length ¢ and the
primary time 7. The whole formalism, developed in [1]-[6] on condition that
¢ is the minimal length, is valid for the case when ¢ is the primary length but
now we can lift the formal requirement for involvement of [,,;, in the theory
from the start.

4.1. The primarily measurable space-time quantities (variations) are un-
derstood as the quantities Ax; and At taking the form

AZL’Z' = NAzi& At = NAtT, (12)

where Nay,, Na; are integer numbers. Further in the text we use both Nag,, Na;
and the equivalent N, , V.

4.2. Similarly, the primarily measurable momenta are considered as a
subset of the momenta characterized by the property

h

= 1
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where IV, is a nonzero integer number and p,, is the momentum corresponding
to the coordinate x;.

4.3. Finally, let us define any physical quantity as primarily or elementary
measurable when its value is consistent with point 4.1,4.2 and formulae (12),
(13).

Then we consider formula (13) with the addition of the momenta p,, = py, =
ﬁoﬁ’ where N, is an integer number corresponding to the time coordinate

(Na¢ in formula (12)).

For convenience, we denote Primarily Measurable Quantities satisfying
4.1-4.3 in the abbreviated form as PMQ. Also, for the Primarily Measur-
able Momenta we use the abbreviation PMM.

First, we consider the case of Low Energies, i.e. £ < E; (same £ < E,.

It is obvious that all the nonzero integer numbers N,., N; (or same Ng,sp =
0,...,3) from formulae (12),(13) should satisfy the condition [N,,| > 1. It is
clear that all the momenta p; at low energies £ < E, meet the condition
pi = h/(N;{), where |N;| > 1 but is not necessarily an integer. With regard
for smallness of ¢ and for the condition |V;| > 1, we can easily show that the
difference 1/(N;£)—1/([NV;]€), (h/(N;¢)—h/([IV;]€)) is negligible and in this way
all momenta in the region of low energies £ < E, may be taken as PMM
with a high accuracy.

It is obviously that the case of Low Energies in this section is coincident with
the "low energies” condition from Remark 3.2.

It is assumed that a theory we are trying to resolve is a deformation of the
initial continuous theory.

Definition 4.1

The deformation is understood as an extension of a particular theory by in-
clusion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [31].

Then it should be noted that PMQ is inadequate for studies of the physi-
cal processes. In fact, among PMQ, we have no quantities capable to give the
infinitesimal quantities dz,, u = 0, ..., 3 in the limiting transition in a continu-
ous theory.

Therefore, it is reasonable to use notion of Generalized Measurability

We define any physical quantity at all energy scales as generalized measur-
able or, for simplicity, measurable if any of its values may be obtained in
terms of PMQ specified by points 4.1-4.3.

The generalized measurable quantities will be denoted as GMQ.
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Note that the space-time quantities

Tl
Nt _pNtcch
14 ?
ﬁ :p]\h%, 1= ]., ...73, (14)

where py,, pn,. are Primarily Measurable momenta, up to the fundamental
constants, are coincident with py,, pn,. and they may be involved at any stage
of the calculations but, evidently, they are not PMQ, but they are GMQ.
So, in the proposed paradigm at low energies ¥ < E, a set of the PMM is
discrete, and in every measurement of p = 0, ..., 3 there is the discrete subset
P,, C PMM:

Py, ={. PN, —1, PN, DNy 415 -} (15)

In this case, as compared to the canonical quantum theory, in continuous
space-time we have the following substitution:

Apy > dpy, APN,, = PNy, — PNy, +1 = PNy, (Nx, +1)5
A L0 AF(pn,,) F(pn,,) —F(pn,,+1)  F(pn,,) — F(pn,,+1)

) = = . 16
Ap, Op, Ap, PN,, — PNy, +1 PN, (N, +1) (16)
And
l
N, = da;
A = 0 | AF(x,) _ F(x, +(/Ny,) — F(xu)‘ (17)
An,, or, An,, (/Ny,

It is clear that for sufficiently high integer values of |N,,|, formulae (16),(17)
reproduce a continuous paradigm in the momentum space to any preassigned
accuracy. However, at low energies F < FE, a set of PMM clearly is not a
space. Considering this, the formulae at low energies offer the Correspon-
dence to Continuous Theory (CCT).

It is important to make the following remarks in medias res:

Remark 4.1.

In this way any point {z,} € M C R* and any set of integer numbers high
in absolute values {N,,} are correlated with a system of the neighborhoods
for this point (z, £ ¢/N,,). It is clear that, with an increase in |N,,|, the
indicated system converges to the point {z,}. In this case all the ingredients
of the initial (continuous) theory the partial derivatives including are replaced



The equivalence principle, cosmological term, quantum theory and ... 143

by the corresponding finite differences.

Remark 4.2.

It is further assumed that at low energies £ < E, (same E < E,) all
the observable quantities are PMQ.

Because of this, values of the length ¢/N; and of the time ¢/N; from formula
(14) could not appear in expressions for observable quantities, being involved
only in intermediate calculations, especially at the summation for replacement
of the infinitesimal quantities dt, dx;;i = 1,2,3 on passage from a continuous
theory to its measurable variant.

Further it is assumed that at High Energies, I/ =~ E,, PMQ are inade-
quate for studies of the theory at these energies. The assumption follows quite
naturally. For example, if GUP (11) is valid and if £ = ¢, then at high energies
formula (11) creates the momenta Ap(Na,, GUP) which are not primarily
measurable [4] —[6]:

h

1/2(Nag + /N2, — 1)0

Naturally, formula (18) represents only a particular case of variations in the
generalized measurable momenta at high energies &/ ~ E,. Suppose, we
know that in the general case at high energies £/ ~ F, minimal variations of
momenta are given by a set of the generalized measurable quantities py, .
where we have the integer numbers N, ,|N,,| ~ 1. Then it is reasonable to
assume that minimal variations of ”coordinates” at high energies are given by
the following formula:

Ap = Ap(Na,, GUP) = (18)

na
where py, —are the above-mentioned generalized measurable momenta at
high energies.

Remark 4.3

When at low energies E# < E,, we lift restrictions on integrality of N,,, from
formulae (16),(17) it directly follows that in this case we have a continuous
analog of the well-known theory with the only difference: all the used small
quantities become dependent on the existent energies and we can correlate
them. In this way formula (17) may be written as

g qu [qu] ’
0 A A
> — (20)

(%cu ANX# A [qu]
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where [N, | > 1 is a sufficiently large number that varies continuously. It is
clear that in formula (20) the first arrow corresponds to the continuous theory
with a specific selection of values of the infinitesimal quantities dx,. As noted
above, the difference ¢/N,, —(/[N,,] is negligible and hence the second arrow
corresponds to passage from the initial continuous theory to a similar discrete
theory. Of course, formula (16) may be rewritten in the like manner. In what
follows, formula (20) plays a crucial part in derivation of the results and is
greatly important for their understanding.

The main target of the author is to form a quantum theory and gravity only
in terms of PMQ.

5 QFT in Measurable Form.Origin

Considerations of Section 4 point to the fact that the Least Action Principle
at low energies I < Fy are valid in a measurable form with substitution
of the measurable analogs defined in foregoing Section for all the components
involved in proof of these arguments. For the canonical (continuous) case we
use the notation of Section 3 in [24].

Let ¢ be a set of all the considered fields ¢ = (1, 2, ...). Then the action S
in the continuous case taking the form

S = /L’(cp,é’ugp)d‘lx (21)

is replaced by the measurable action S,eqs,n

Ap l
= 22
Smeas,{N} Z ‘Cmeas,{N} (% ANXH ) H qu ) ( )

where N, — integers with the property |N,,| > 1,Lycqs,v—Lagrangian den-
sity of the measurable fields ¢ and of their measurable analogs for partial

derivatives in formula (17) A?f . This means that all variations of these func-

tions are expressed in terms of only measurable quantities. In the product
[1 the index p takes the values = 0, ..., 3, and {/N}-collection of all N, ,i.e.
{N} = {N,,}. Further, where this causes no confusion, for the measurable
quantities corresponding to the set {N} we can equally use both the lower
index {N} and N.

According to Remarks 4.1.,4.3. for the integer numbers N, sufficiently high
in absolute value we, to a high accuracy, have

S = Smeas,{N}' (23)

Then it is assumed that all the considered functions are measurable, i.e.
all variations of these functions are expressed in terms of only measurable
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quantities. The paper [6] presents in detail a measurable form of the Least
Action Principle.

It is clear that in all the formulae, similar to formula (22), on passage from QFT
in continuous consideration to the measurable form of QFT, in accordance
with (16) and (17), the substitution is performed

£ (24)

/HZ;@MHAi ;d4mr—>HN

Now we suppose that condition (4) (or equivalently £ < FEy) is satisfied, i.e.
the existent energies are low.

Then in general case as be noted in Sections 2,3, EP is valid and in the well-
known Quantum Field Theory (QFT) [24]- [26] and, specifically, in its part
used for the collider computations, space-time is assumed to be locally flat,
i.e. to be locally Minkowskian.

Besides, as noted in Remark 3.2, actually all the energies considered exper-
imentally meet the condition £ < Ej,(or same £ < E,) and hence (see the
end of Remark 4.2) in measurable consideration all observable quantities
are PMQ.

In this case in measurable picture we have a discrete QFT that is almost-
continuous due to Remark 4.3. As such a theory in the momentum represen-
tation has the upper limit cut-off, it is not Lorentz-invariant from the start. As
distinct from other works in the proposed approach the wave function is con-
sidered separately at high energies Ef ~ I, and at low energies ' < E,, with
the imposed restriction that the first function is a high-energy deformation of
the second function [2]. In other works (for example, in [39]) the wave function
is common for all the energy scales. But according to the Assumption 3.1,
this is impossible because the indicated functions belong to spaces of different
geometries: curved and flat.

It is clear that the above-mentioned discrete (almost-continuous) (QFT), with
a cut-off at a certain upper limit of the momenta which are considerably much
lower than the Planck, should be ultraviolet-finite. In this case passage to
higher energies means going from the momenta py, |[N| > 1 to the momenta
Py [IN| > [N '| > 1 and, vice versa, passage to lower energies is going in the
last inequality from the integers N to the integers N.

For further resolution of the indicated QFT, along with formula (24), we should
“translate” correctly the mathematical apparatus of the Fourier transform and
Dirac d-function into the measurable form. As already noted in Section 3
there is the experimental indication that Lorentz-invariance is violated on pas-
sage to higher energies even for the canonical QFT, i.e. in the continuous
space-time paradigm.

A more detailed presentation of this section results was presented in a recently
published paper [41].
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6 Conclusion

The following conclusions may be drawn:

6.1 As shown in Sections 2 and 3, Einstein’s Equivalence Principle (EP) has
natural applicability boundaries. In this case the Planck scales £ ~ FE, form
the upper (rough) boundary. However, a finer boundary for the specific pro-
cesses in high-energy physics is always considerably lower than the Planck’s,
lying within the energy region I/ < FE,. This boundary is the natural appli-
cability boundary for the well-known Quantum Field Theory (QFT) [24]- [26]
only in flat space-time.

6.2 In this way we predetermine the two energy scales: £~ E, and F < E,
corresponding to the Early Universe and the Modern Universe. The remaining
(intermediate) energy scales are not yet considered because it is assumed that,
due to Remark 3.2 in Section 3, their influence on the processes under study
is minor.

6.3 In the proposed approach the mathematical apparatus of well-known QFT
[24]- [26] in continuous space-time based on the use of the abstract infinites-
imal quantities dx,, dp;, dE is replaced by the apparatus based on the mea-
surability notion and involving the ordered small quantities dependent on
the existent energies. All small space-time variations in the indicated theories
are generated by the momenta, (primarily measurable at low energies and
generalized measurable at high energies). Considering the involvement of
the primary length ¢ oc [, in this case the initial theory becomes discrete but
at low energies, far from the Planck energy I/ < FE,, it is very close to the
initial theory in continuous space-time. Real discreteness is revealed at high
energies ¥ < FE,. Such an approach enables one to study the QFT in the
same terms at all the energy scales and in principle,considering the content of
the item 6.1, to construct this theory without ultraviolet divergences.

6.4 Evidently that for the correctness of the theory it is necessary that at
low energies £/ < E, all results should not depend on the choice py,qy-
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