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1 Introduction. Main Target

This paper is a continuation of the earlier works published by the author [1]–
[10]. The main idea and target of these works is to construct a correct quantum
theory and gravity in terms of the variations (increments) dependent on the
existent energies.
Within such a theory, the small and infinitesimal variations dx, δx, dp, δp...
which, by definition, are independent of the existent energies should be with-
drawn, being included only on passage to the particular limit. First of all, this
holds true for the infinitesimal space-time variations dxµ as the latter are at
the basis of continuous space-time.
At the present time physics is using (not without success) the mathematical
apparatus based on the infinitesimal space-time variations (increments)

dt, dxi, i = 1, ..., 3 (1)
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This mathematical apparatus comes from mathematical analysis [11], calcu-
lus of variations [12], and classical mechanics [13],[14]. Continuous space-time
forms the base thereof. Then this tool has been successfully applied in Quan-
tum Theory (QT) [15], Special Relativity, and General Relativity (GR) [16].
But, due to the introduction of ultraviolet and infrared divergences into a
Quantum Theory and also due to the correct passage to the high-energy (ul-
traviolet) region in Gravity, we are facing very serious problems.
By the authors opinion, these problems are solvable but beyond the paradigm
of continuous space-time. The principal idea of the papers [1]–[10] is as follows:
(1.1) Within a discrete model for continuous space-time, at low energies (which
are far from the Planck energies) the results, to a high accuracy, are identical
to those obtained by a continuous model for space-time (and in this case may
be called the quasi-continuous model). But at high (Plancks) energies the in-
dicated model is fundamentally discrete, leading to principally new results.
(1.2) All variations in any physical system considered in such a discrete model
should be dependent on the existent energies.
What possibilities are offered by the proposed approach? When studying the
relationship mentioned in point (1.2) over the whole energy scales, we can
combine low and high energies as a single unit and can solve particular prob-
lems including the following: problems of transition from low to high energies
and vice versa; the ultraviolet (UV) and infra-red (IR) divergence problem in
QT and GR.
In brief, as regards realization of points (1.1) and (1.2), the author has ob-
tained the following results.
The paper [7] shows that in a quantum theory, proceeding from the natu-
ral assumptions mentioned in [9] and refined in [10] Principle of Bounded
Space-Time Variations (Increments), the notion of continuous space-time
can appear only in a certain limit. And this is related to the fact that the mea-
surement procedure and Heisenberg’s Uncertainty Principle (HUP) [17] play a
fundamental role in the quantum theory.
If the Principle of Bounded Space-Time Variations (Increments) is
correct, the minimal length lmin and time tmin = lmin/c appear in the na-
ture, (where c is a speed of light). Then, based on lmin and tmin definitions of
measurability and measurable quantities, it may be correctly introduced
into the theory. Some examples show that, although in this case it becomes
discrete, at low energies, E, far from the Planck energy E � EP it is close to
the initial theory in continuous space-time. Real discreteness of the theory is
manifested only at high energies E close to the Plancks E ≈ EP [1],[7],[9],[10].
Based on measurable quantities, the construction of Classical Mechanics is
given in the paper [10]. It has been demonstrated how, in the limiting tran-
sition from measurable quantities, we can have the infinitesimal space-time
variations (increments) (formula (1)) as fundamental ingredients of Classical
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Mechanics.
In the present paper the principles of Special Relativity are given in terms of
the notion of measurability (measurable quantities).
The paper is structured as follows. Section 2 presents the results relevant for
further interpretation. The presentation is rather detailed as (i) in subsequent
sections there are many references to the basic notions from Section 2; and (ii)
some results from the previous works (for example, Comment 2*. are made
more specific by the author because they are important for Sections 3 and 4.
The original results are given in Section 3.
Finally, Section 4 presents concluding comments and explanations.

2 Initial Data and Necessary Information

This section gives the necessary initial data from [1]–[10]. Some part of this
information is presented in [7],[9],[10].

2.1 Minimal length, Primary and Generalized Measur-
ability

The present study is based on the Definition I. [10] (being improvement of
Supposition I. in [7],[9]) and on Supposition II. from [7],[9]:
Definition I. Let’s call as primarily measurable variation any small vari-
ation (increment) ∆̃xµ of any spatial coordinate xµ of the arbitrary point
xµ, µ = 1, ..., 3 in some space-time system R, if it may be realized in the form
of the uncertainty (standard deviation) ∆xµ when this coordinate is measured
within the scope of Heisenberg’s Uncertainty Principle (HUP) [17]

∆̃xµ = ∆xµ,∆xµ '
h̄

∆pµ
, µ = 1, 2, 3 (2)

for some ∆pµ 6= 0.
Similarly, at µ = 0 for the pair “time-energy” (t, E), let us call any small

variation (increment) the primarily measurable variation in the value of
time ∆̃x0 = ∆̃t0 if it may be realized in the form of the uncertainty (standard
deviation) ∆x0 = ∆t, and then

∆̃t = ∆t,∆t ' h̄

∆E
(3)

for some ∆E 6= 0. Here HUP is given for the nonrelativistic case. In the
relativistic case HUP has the distinctive features [18] which, however, are of
no significance for the general formulation of Definition I., being associated
only with particular alterations in the right-hand side of the second relation
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Equation (3).
It is clear that at low energies E � EP (momenta P � Ppl) Definition I.
sets a lower bound for the primarily measurable variation ∆̃xµ of any
space-time coordinate xµ.
At high energies E (momenta P ) this is not the case if E (P ) have no upper
limit. But, according to the modern knowledge, E (P ) are bounded by some
maximal quantities Emax, (Pmax)

E ≤ Emax, P ≤ Pmax, (4)

where in general Emax, Pmax may be on the order of the Planck quantities
Emax ∝ EP , Pmax ∝ Ppl and also may be the trans-Planck quantities.

In any case the quantities Pmax and Emax lead to the introduction of the
minimal length lmin and of the minimal time tmin.
Supposition II. There is the minimal length lmin as a minimal unit of mea-
surement for all primarily measurable variations having the dimension of
length, whereas the minimal time tmin = lmin/c as a minimal unit of measure-
ment for all quantities or primarily measurable variations (increments)
having the dimension of time, where c is a speed of light.

lmin and tmin are naturally introduced as ∆xµ, µ = 1, 2, 3 and ∆t in Equa-
tions (2) and (3) for ∆pµ = Pmax and ∆E = Emax.

For definiteness, we consider that Emax and Pmax are the quantities on the
order of the Planck quantities, then lmin and tmin are also on the order of
Planck quantities lmin ∝ lP , tmin ∝ tP .

Definition I. and Supposition II. are quite natural in the sense that
there are no physical principles with which they are inconsistent.
The combination of Definition I. and Supposition II. will be called the
Principle of Bounded Primarily Measurable Space-Time Variations
(Increments) or, for short, the Principle of Bounded Space-Time Vari-
ations (Increments) abbreviated as (PBSTV).
As the minimal unit of measurement lmin is available for all the primarily
measurable variations ∆L having the dimensions of length, the “Integral-
ity Condition” (IC) is the case

∆L = N∆Llmin, (5)

where N∆L > 0 is an integer number.
In a like manner, the same “Integrality Condition” (IC) is the case for all the
primarily measurable variations ∆t having the dimensions of time. And
similar to Equation (5), we get for any time ∆t:

∆t ≡ ∆t(Nt) = N∆ttmin, (6)

where N∆L > 0 is an integer number too.
Definition 1 (Primary or Elementary Measurability.)
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(1) In accordance with PBSTV, let us define the quantity having the dimen-
sions of length or time as primarily (or elementarily) measurable when
it satisfies the relation Equation (5) (and respectively Equation (6)).
(2)Let us define any physical quantity primarily (or elementarily) mea-
surable when its value is consistent with point (1) of this Definition.
Since, in fact, PBSTV introduces the minimal length lmin for primarily mea-
surable variations,instead of HUP, we can consider its widely known high-
energy generalization—the Generalized Uncertainty Principle (GUP) that nat-
urally leads to the minimal length lmin [19]–[30]:

∆x ≥ h̄

∆p
+ α′l2P

∆p

h̄
. (7)

Here α′ is the model-dependent dimensionless numerical factor and lP is the
Planck length. As Equation (7) is a quadratic inequality, then it naturally
leads to the minimal length lmin = ξlP = 2

√
α′lP .

Due to (5), we have
∆x = N∆xlmin. (8)

Then the transition from high to low energies in GUP, i.e., (GUP,∆p→ 0) =
(HUP ), is nothing else but

(N∆x ≈ 1)→ (N∆x � 1). (9)

Substituting (8) into (7) and making the necessary calculations, we can see
that in the general case

∆p ≡ ∆pN∆x
=

h̄

(N∆x − 1
4N∆x

)lmin
. (10)

Whereas at low energies E � EP

∆p ≡ ∆pN∆x
=

h̄

N∆xlmin
. (11)

At the same time, for the corresponding energy E, we have

∆E ≡ ∆E(Nt) =
h̄

(Nt − 1
4Nt

)tmin
(12)

or, for low energies, we get

∆E ≡ ∆E(Nt) =
h̄

Nttmin
. (13)

In the relativistic case the formulae corresponding to (10),(12) have been de-
rived in [2],[7].
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Note that the above-mentioned formulae may be conveniently rewritten in
terms of lmin with the use of the deformation parameter αa [7]. This parame-
ter has been introduced earlier in papers [31]–[38] as a deformation parameter
(based on paper [39]) on going from the canonical quantum mechanics to the
quantum mechanics at Planck’s scales (early Universe) that is considered to
be the quantum mechanics with the minimal length (QMML)

αa = l2min/a
2, (14)

where a is the measuring scale.
Actually, with the equality (∆p∆x = h̄), Equation 7 is of the form:

∆x =
h̄

∆p
+
α∆x

4
∆x. (15)

In this case, due to Equations (5), (9) and (15) take the following form:

N∆xlmin =
h̄

∆p
+

1

4N∆x
lmin (16)

or

(N∆x −
1

4N∆x
)lmin =

h̄

∆p
. (17)

That is we have

∆p =
h̄

(N∆x − 1
4N∆x

)lmin
. (18)

From Equations (16)–(10) it is clear that HUP, Equation (2), appears, to
a high accuracy, in the limit N∆x� 1 in conformity with Equation (9).

It is easily seen that the parameter αa from Equation (14) is discrete as it
is nothing else but

αa = l2min/a
2 =

l2min
N2
a l

2
min

=
1

N2
a

. (19)

At the same time, from Equation (19) it is evident that αa is irregularly
discrete.

It is clear that from Equation (10) at low energies (|N∆x| � 1), up to the
constant

h̄2

l2min
=

h̄c3

4α′G
(20)

we have
α∆x = (∆p)2, (i.e.α∆x ∝ (∆p)2). (21)

However, the physical quantities complying with Definition 1 are insuffi-
cient for the research of physical systems.
Indeed, such a variable as

αNlmin(Nlmin) = lmin/N, (22)
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(where αNlmin is taken from formula (19) at a = Nlmin), is fully expressed in
terms of only Primarily Measurable Quantities from Definition 1 and
hence may appear at any stage of calculations, apparently being inconsistent
with Definition 1. Because of this, it is necessary to introduce the following
definition generalizing Definition 1–

Definition 2. Generalized Measurability
We shall call any physical quantity the generalized-measurable or, for sim-
plicity, measurable quantity if any of its values may be obtained in terms of
Primarily Measurable Quantities from Definition 1.

To simplify, in what follows we use the term Measurability instead of Gen-
eralized Measurability.
It’s evident that any primarily measurable quantity (PMQ) is measur-
able. Generally speaking, counter is not correct, as indicated by formula (22).

Naturally, the minimal possible primarily measurable change of length is
lmin. It corresponds to some maximal value of the energy Emax or momentum
Pmax. If lmin ∝ lP , then Emax ∝ EP ,Pmax ∝ PPl. Here Pmax ∝ PPl, where PPl
is where the Planck momentum. Then denoting in the nonrelativistic case with
4p(w) a minimal primarily measurable change every spatial coordinate w
corresponding to the energy E we obtain the following equation

4Pmax(w) = 4Emax(w) = lmin. (23)

Evidently, for lower energies (momenta), the corresponding values of4p(w)
are higher and, as the quantities having the dimensions of length are trans-
formed to

|4p(Np)(w)| = |Np −
1

4Np

|lmin, (24)

where |Np| > 1 is an integer number, we have

|Np −
1

4Np

|lmin =
h̄

|p(Np)|
, (25)

where p(Np) is already the generalized-measurable value.
In the relativistic case, for primarily measurable variations, Equation (23)
still holds, whereas Equation (24) for E ≡ E(NE) < Emax is replaced by

|4E(NE)(w)| = |NE|lmin, (26)

where |NE| > 1 is an integer.
Next we assume that at high energies E ∝ EP there is a possibility only

for the nonrelativistic case or ultrarelativistic case.
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Then, for all the measurable variations in ultrarelativistic case, formula
(25) takes the form [7]:

|NE −
1

4NE

|lmin =
h̄c

E(NE)
=

h̄

|p(Np)|
, (27)

where NE = Np, and, similarly, formulae (25) E(NE) (p(Np)) represent the
generalized-measurable quantities too.

In the relativistic case at low energies we have

E � Emax ∝ EP , (28)

formula (24) takes the form

|4E(NE)(w)| = |NE|lmin =
h̄c

E(NE)
, |NE| � 1 − integer. (29)

And the energy E(NE) becomes the primarily measured quantity.
In the nonrelativistic case at low energies Equation (25), due to formula

(28), takes the form

|4p(Np)(w)| = |Np|lmin =
h̄

|p(Np)|
, |Np| � 1− integer, (30)

where p(Np) is the primarily measured quantity too.
In a similar way, for the time coordinate t, by virtue of Equations (6)–(13),

at the same conditions we have similar Equation (23) for a minimal primarily
measurable change

4Emax(t) = tmin. (31)

For E ≡ E(Nt) < Emax we have

|4E(Nt)(t)| = |Nt −
1

4Nt

|tmin, (32)

where |NE(Nt)| > 1 is an integer, so that we obtain, similar to (25) and (27),
the generalized-measurable quantity E(Nt) from

|Nt −
1

4Nt

|tmin =
h̄c

E(Nt)
. (33)

In the relativistic case at low energies

E � Emax ∝ EP , (34)
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equation (24) takes the form [7]:

|4E(Nt)(w)| = |Nt|lmin =
h̄c

E(Nt)
, |Nt| � 1− integer, (35)

where E(Nt) is already the primarily measured quantity.

Let us make several important Comments:

Comment 2*.
From the above formulae it follows that, within GUP, the primarily mea-
surable variations (quantities) are derived, to a high accuracy, from the
generalized-measurable variations (quantities) only in the low-energy limit
E � EP , (formula (9))
Comment 2.1..
What is the main difference between Definition 1 and Definition 2?

2.1.1.Definition 1 defines variables which may be obtained from the immedi-
ate experiment.

2.1.2. Definition 2 gives the variables which may be calculated based on
the primarily measurable quantities, i.e. based on the data obtained in
the previous clause 2.1.1.

Comment 2.2.
It is evident that HUP-derived (2) ∆pi

.
= ∆pi,HUP ; i = 1, ..., 3 are primarily

measurable quantities:

∆pi '
h̄

∆xi
=

h̄

N∆xilmin
. (36)

However, the variables ∆pi
.
= ∆pi,GUP , obtained from GUP (7) and defined by

formula (10), are obviously not the same but only measurable quantities.
From formulae (20) and (21) it follows that, in the case HUP (2)is correct,
i.e., at low energies E � Emax ∝ EP , in the notations of formulae (24)–(35)we
have

αNplmin(HUP )
.
= α∆x = p(Np)

2 l
2
min

h̄2 =
1

N2
p

, (37)

where ∆x = Nplmin and p(Np) is calculated from formula (30).
However, at high energies E ≈ EP HUP is replaced by GUP, the primarily
measurable quantity p(Np) from formula (30) is replaced by the general-
ized measurable quantity ∆pi

.
= ∆pi,GUP from formula (25).
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Then αNplmin(HUP ) may be replaced by αNplmin(GUP ) as follows:

αNplmin(GUP ) = p(Np, GUP )2 l
2
min

h̄2 =

=
l2min

(Np − 1
4Np

)2l2min
=

1

(Np − 1
4Np

)2
. (38)

When going from high energies E ≈ EP to low energies E � EP , we get

αNplmin(GUP )
(|Np|≈1)→(|Np|�1)−→ αNplmin(HUP ). (39)

In what follows all the considerations are given in terms of measurable quan-
tities in the sense of Definition 2 given in this Section.Of course, this applies
also to the variations of space-time coordinates.

2.2 Space-Time Lattice of Primarily Measurable Quan-
tities, Dual Lattice and α− lattice

For convenience, we denote the minimal length lmin 6= 0 by ` and tmin 6= 0 by
τ = `/c.
So, provided the minimal length ` exists, two lattices are naturally arising.
I. Lattice of the space-time variation—LatS−T representing, to within the
known multiplicative constants, for sets of nonzero integers Nw 6= 0 and Nt 6= 0
in corresponding formulae from a set of Equations 24 and (35) for each of the
three space variables w

.
= x; y; z and the time variable t

LatS−T
.
= (Nw`,Ntτ). (40)

Which restrictions should be initially imposed on these sets of nonzero
integers?

It is clear that in every such set all the elements (Nw`,Ntτ) should be suf-
ficiently “close”, because otherwise, for one and the same space-time point,
variations in the values of its different coordinates are associated with princi-
pally different values of the energy E which are “far” from each other.

Note that the words “close” and “far” will be elucidated further in this
text.

Thus, at the admittedly low energies (Low Energies) E � Emax ∝ EP the
low-energy part (sublattice) LatS−T [LE] of LatS−T is as follows:

LatS−T [LE] = (Nw`,Ntτ); |Nx| � 1, |Ny| � 1, |Nz| � 1, |Nt| � 1. (41)

At high energies (High Energies) E → Emax ∝ EP we, on the contrary, have
the sublattice LatS−T [HE] of LatS−T

LatS−T [HE] = (Nw`,Ntτ); |Nx| ≈ 1, |Ny| ≈ 1, |Nz| ≈ 1, |Nt| ≈ 1. (42)
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The lattice LatS−T (40) is called the primary (or primitive) lattice of
the space-time variation.

II. Next let us define the lattice momenta-energies variation LatP−E as a set
to obtain (px(Nx,p), py(Ny,p), pz(Nz,p), E(Nt)) in the nonrelativistic and ultra-
relativistic cases for all energies, and as a set to obtain
(Ex(Nx,E), Ey(Ny,E), Ez(Nz,E), E(Nt)) in the relativistic
(but not ultrarelativistic) case for low energies E � EP , where all the com-
ponents of the above sets conform to the space coordinates (x, y, z) and time
coordinate t and are given by the corresponding formulae (23)–(35) from the
previous Section.
Note that, because of the suggestion made after formula Equation (28) in the
previous Section, we can state that the foregoing sets exhaust all the collec-
tions of momenta and energies possible for the lattice LatS−T .
From this it is inferred that, in analogy with point I of this Section, within the
known multiplicative constants, we have

LatP−E
.
= (

1

Nw − 1
4Nw

,
1

Nt − 1
4Nt

), (43)

where Nw 6= 0, Nt 6= 0 are integer numbers from Equation (40). Similar to
Equation (41), we obtain the low-energy (Low Energy) part or the sublattice
LatP−E[LE] of LatP−E

LatP−E[LE] ≈ (
1

Nw

,
1

Nt

), |Nw| � 1, |Nt| � 1. (44)

In accordance with Equation (42), the high-energy (High Energy) part
(sublattice) LatP−E[HE] of LatP−E takes the form

LatP−E[HE] ≈ (
1

Nw − 1
4Nw

,
1

Nt − 1
4Nt

), |Nw| → 1, |Nt| → 1. (45)

It is important to note the following.
In the low-energy sublattice LatP−E[LE] all elements are varying

very smoothly, enabling the approximation of a continuous theory.

We will preserve the lattice LatP−E, but primary lattice LatS−T will be re-
placed with “α − lattice“, measurable space-time quantities, which will
be denoted by LatαS−T :

LatαS−T
.
= (αNw`Nw`, αNtτNtτ) = (

`

Nw

,
τ

Nt

). (46)

In the last formula the variable αNtτ denotes the parameter α corresponding
to the length (Ntτ)c

αNtτ
.
= α(Ntτ)c. (47)
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As in this case the low energies E � EP are discussed, αNw` in this formula is
consistent with the corresponding parameter from formula (37):

αNw` = αNw`(HUP ) (48)

As it was mentioned in the previous section, in the low-energy E � Emax ∝ EP
all elements of the sublattice LatP−E[LE] are varying very smoothly, enabling
the approximation of a continuous theory.
Similerly to the low-energy part of LatαS−T [LE], the lattice LatαS−T will vary
very smoothly:

LatαS−T [LE] = (
`

Nw

,
τ

Nt

); |Nx| � 1, |Ny| � 1, |Nz| � 1, |Nt| � 1. (49)

In Section 5 of [7] the three following cases are selected:

(a)“Quantum Consideration, Low Energies”:

1� |Nw| ≤ Ñ;

(b)“Quantum Consideration, High Energies”:

|Nw| ≈ 1;

(c)“Classical Picture”:
1� Ñ� |Nw|.

Here Ñ is the cutoff parameter , defined by the current task [7].
It is assumed that there is a correct transition to the infinite limit in the
“Classical Picture” (c)

|Nw| → ∞, |Nt| → ∞. (50)

Then, if for the three space coordinates xi; i = 1, 2, 3 we introduce the following
notation:

∆(xi)
.
= ∆̃[αN∆xi

] = αN∆xi
`(N∆xi`) = `/N∆xi ;

∆[F (xi)]

∆(xi)
≡ F (xi + ∆(xi))− F (xi)

∆(xi)
, (51)

it is evident that

lim
|N∆xi

|→∞

∆[F (xi)]

∆(xi)
= lim

∆(xi)→0

∆[F (xi)]

∆(xi)
=
∂F

∂xi
. (52)
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Respectively, for the time x0 = t we have:

∆(t)
.
= ∆̃[αN∆t

] = αN∆tτ (N∆tτ) = τ/N∆t;

∆[F (t)]

∆(t)
≡ F (t+ ∆(t))− F (t)

∆(t)
, (53)

then

lim
|N∆t|→∞

∆[F (t)]

∆(t)
= lim

∆(t)→0

∆[F (t)]

∆(t)
=
dF

dt
. (54)

We shall designate for the momenta pi; i = 1, 2, 3

∆pi =
h̄

N∆xi`
;

∆piF (pi)

∆pi
≡ F (pi + ∆pi)− F (pi)

∆pi
=
F (pi + h̄

N∆xi
`
)− F (pi)

h̄
N∆xi

`

. (55)

From where, similar to (52), we can drive

lim
|N∆xi

|→∞

F (pi + ∆pi)− F (pi)

∆pi
= lim
|N∆xi

|→∞

F (pi + h̄
N∆xi

`
)− F (pi)

h̄
N∆xi

`

=

= lim
∆pi→0

F (pi + ∆pi)− F (pi)

∆pi
=
∂F

∂pi
. (56)

Therefore, at low energies E � EP , i.e. for |N∆xi | � 1; i = 0, ..., 3, on going
to the limit (52),(54),(56) it is possible to obtain the known partial derivatives
like in the case of continuous space-time.
It should be noted that α − lattice LatαS−T (formula (46)) is not introduced
artificially. But it appears with the “factor“ 1/4 from equation (15) written
in the form

∆x− h̄

∆p
=

1

4
α∆x∆x. (57)

It is evident that the factor 1/4 in the right part (57) is not significant in this
case.
In [10] it has been shown that, using the limiting transition to low energies
(i.e., at (|N∆t|, |N∆xi |)→∞ formula (52)–(56)) from α − lattice LatαS−T , we
can get the Classical Mechanics in terms of the measurable quantities.
In this case the infinitesimal space-time variations (1) are appearing in the
limit

(αN∆tτN∆tτ =
τ

N∆t

= pN∆tc
`2

ch̄
)
N∆t→∞−→ dt,

(αN∆xi
`N∆xi` =

`

N∆xi

= pN∆xi

`2

h̄
)
N∆xi

→∞
−→ dxi, 1 = 1, ..., 3. (58)

In what follows, N∆t is denoted by N∆x0 and the set N∆xi , i = 0, ..., 3 is denoted
as (N∆xµ).
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3 Special Relativity in Terms of Measurable

Quantities. Start

3.1 Basic Definitions and Tools

It is assumed that we are in the region of low energies E � EP , and we start
from the primarily-measurable momenta (pN∆xi

, pN∆tc) in the left-hand side of
the formula (58) to have

|N∆xµ | � 1 (59)

for all the elements of the set (N∆xµ).

Definition 3.1
Let us denote any of the fixed sets of momenta (pN∆xi

, pN∆tc)
.
= (pN∆xµ

) meet-
ing the condition (59) the canonically measurable basic set of space-time, and
the canonically measurable prototype of the infinitesimal space-time interval
square in the “ flat case”

ds2 = ηµνdx
µdxν . (60)

With respect to (pN∆xµ
), we take the expression

∆s2
(pN∆xµ

)
.
= ∆s2

(N∆xµ )
.
= ηµν

`4

h̄2pN∆xµ
pN∆xν

= ηµν
`2

N∆xµN∆xν

, (61)

where ηµν is the Minkowskian metric

||ηµν || = ||ηµν || = Diag (1,−1,−1,−1) . (62)

Next let us find the measurable prototype (analog) for Lorentz transformations.
Then, in what follows, we assume that the speed of light c = 1.
It is interesting to consider the Lorentz transformations [40],[41] in terms of
measurable quantities.
The Hyperbolic rotations

t′ = t coshα + x sinhα,

x′ = t sinhα + x coshα,

α = const, y′ = y, z′ = z (63)

in the infinitesimal form will be as follows:

dt′ = ∆(α)dt = dt coshα + dx sinhα,

dx′ = ∆(α)dx = dt sinhα + dx coshα,

α = const, dy′ = dy, dz′ = dz. (64)
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We suppose that the effect of the Lorentz Group (LG) on the canonically
measurable basic set (pN∆xµ

) is the same as on (dxµ), with the corresponding
index µ. Specifically, formula (64) has a measurable analog that, up to the
factor `2/h̄, will be of the form

pt(α)
.
= ∆(α)pN∆t

= pN∆t
coshα + pN∆x

sinhα,

px(α)
.
= ∆(α)pN∆x

= pN∆t
sinhα + pN∆x

coshα,

α = const, pN∆y′
= pN∆y

, pN∆z′
= pN∆z

. (65)

Let (pµ) denote some orbital element of LG generated in the four-dimensional
space by the canonically measurable basic set (pN∆xµ

), and we have

(pµ) ∈ (LG)(pN∆xµ
) = {g(pN∆xµ

)|g ∈ (LG)}. (66)

Then (pµ) is termed as the measurable basics set of space-time, and the ex-
pression

∆s2
(pµ) = ηµν

`4

h̄2pµpν (67)

is identified as the measurable prototype of the infinitesimal space-time interval
square (60) with respect to (pµ).

It is easy to check out that, for the random canonical element

(pµ)
.
= (pN∆xµ

), (68)

the hyperbolic rotations (66)

(pN∆xµ
)→ ∆(α)(pN∆xµ

) (69)

retain their quadratic form (61), and we have

∆s2
∆(α)(pN∆xµ

) = ∆s2
(pN∆xµ

). (70)

So, the operator ∆(α) ∈ (LG) retains the Minkowskian metric in the ”mea-
surable form” (61). In a similar way, we can show that the orthogonal group
O(3) in force in the subspace generated by (pN∆xi

), i = 1, 2, 3 and the repre-
sentations about the axes retain their quadratic forms (61).
Thus, the Lorentz Group (LG) that is in force for (pN∆xµ

) from (68) retains
(61), and for all g ∈ (LG) we have

∆s2
g(pN∆xµ

) = ∆s2
(pN∆xµ

). (71)

As usual, the Lorentz boost (66) may be written as

∆(α)pN∆t
=
pN∆t

+ pN∆x
V√

1− V 2
,

∆(α)pN∆x
=
pN∆t

V + pN∆x√
1− V 2

,

pN∆y′
= pN∆y

, pN∆z′
= pN∆z

, (72)
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where coshα = 1/
√

1− V 2, sinhα = V/
√

1− V 2.
The canonically measurable prototype of the speed components υxi = dxi/dt in

this case will be the quantities υ̃xi =
pN∆xi

pN∆x0

=
N∆x0

N∆xi
.

Consequently, in the measurable form, for the speed components in the general
case of (72), we get the following:

∆(α)x′

∆(α)t′
=

V + υ̃x
1 + υ̃xV

,

∆(α)y′

∆(α)t′
=
υ̃y
√

1− V 2

1 + υ̃xV

∆(α)z′

∆(α)t′
=
υ̃z
√

1− V 2

1 + υ̃xV
. (73)

Then it is assumed that all the quantities considered are measurable in the
sense of Definition 2. Generalized Measurability from Section 2. This
is true for all variations in the indicated quantities. Besides, it is assumed
that the infinitesimal increments of a continuous theory (dxµ) are replaced

by ( `
2

h̄
pN∆xµ

) = ( `
N∆xµ

) . (Of course, here for µ = 0 it is assumed that
`

cN∆x0
= tmin

N∆x0
. But, as in the above text it was denoted that c = 1, in this case

we can use the above notation.)
This supposition is quite natural for the four-dimensional radius vector (ct, x, y, z)

.
=

(xµ).
For all other four-dimensional vectors, tensors, pseudotensors, and the like
this means that their components are dependent only on measurable coordi-
nates and measurable variations of these coordinates. It is easily seen, these
quantities retain all their principal properties involved in tensor analysis (the
corresponding LG representations in the space of these quantities, convolution,
etc.) because, by definition, measurability is not affecting these properties.
It is interesting to consider in this formalism a very important problem asso-
ciated with differentiation and integration.
Let the function ϕ(xµ) of measurable coordinates (xµ) be scalar. (As noted
above, LG retains the property of measurability. So, subsequently there is
no need to qualify this specially.) In a continuous theory, from ϕ(xµ) we can
construct the 4-vector as follows:

∂ϕ

∂xµ
= (

∂ϕ

c∂t
,∇ϕ). (74)

Since it was assumed that c = 1 and hence `
N

= `
cN

= tmin
N

, the analog of (74)
in the formalism under study for the canonical basic set (pN∆xµ

) will be of the
form

4̂
4̂(N∆xµ )xµ

ϕ =
4̂ϕ

4̂(N∆xµ )xµ

.
= (

ϕ(xµ + `2

h̄
pN∆xµ

)− ϕ(xµ)
`2

h̄
pN∆xµ

) =
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= (
ϕ(xµ + `/N∆xµ)− ϕ(xµ)

`/N∆xµ

). (75)

This quantity, similar to the quantity (75) in the continuous case, is a 4-
vector because all its components are transformed by LG as the corresponding
components in a continuous theory.
Consequently, similarly to a continuous theory, the scalar product of two 4-

vectors is also scalar and we have 4̂ϕ
4̂(N∆xµ

)xµ
, and (pN∆xµ

), where

4̂ϕ = 4̂(N∆xµ )ϕ =
∑
N∆xµ

(ϕ(xµ +
`2

h̄
pN∆xµ

)− ϕ(xµ)) =

=
∑
N∆xµ

(φ(xµ + `/N∆xµ)− φ(xµ)). (76)

In fact, 4̂(N∆xµ )ϕ in formula (76) is a highly accurate lattice approximation

for the differential dϕ = ∂ϕ
∂xµ

dxµ in the continuous case.

Since LG transforms the set (pN∆xµ
) similarly to (dxµ), all integral formulae

for the continuous case in the four-dimensional space retain their form in the
proposed measurable variant of a theory, with the corresponding substitution:

(dxµ)⇒ `2

h̄
(pN∆xµ

);
∂

∂xµ
⇒ 4̂
4̂(N∆xµ )xµ

;
∫
⇒

∑
. (77)

In particular, the measurable analog of a scalar – element of integration with
respect to the four-dimensional volume Ω in the continuous case

dΩ ≡
∏
µ

dxµ (78)

is also scalar

∆(N∆xµ )Ω ≡
`8

h̄4

∏
N∆xµ

pN∆xµ
. (79)

This is easily seen. Indeed, for LG acting in the continuous case, we have the
transformation of the coordinate system (xµ) to the new variables (x

′
µ)

dΩ⇒ JdΩ′ = J
∏
µ

dx′µ, (80)

where J – Jacobian that is equal to 1, of the corresponding transformation
g ∈ LG, (dxµ)→ g(dxµ) = (dx′µ).
But it is obvious that, on going from the canonical basic set (pN∆xµ

) to the
randomly measurable basic set (p′µ) = g(pN∆xµ

), we get the same Jacobian
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J = 1. In what follows all the calculations are performed in terms of some
canonically measurable basic set (pN∆xµ

).
In the present formalism we easily can find an analog for the 4-speed of a
continuous theory

uµ =
dxµ
ds

, (81)

where, due to c = 1, we have

ds =
√
ηµνdxµdxν = dt

√
1− dx2 + dy2 + dz2

dt2
= dt
√

1− v2. (82)

In this case

(dxµ)→ `2

h̄
(pN∆xµ

); ds→ ∆s(pN∆xµ
) =

`2

h̄
pN∆x0

√
1− υ̃2, (83)

where |υ̃| =
√∑

i 6=0 υ̃x2
i

– absolute value of the three-dimensional speed of a

particle in terms of the measurable quantities.
If υ̃ = (υ̃x1 , υ̃x2 , υ̃x3) – vector of the three-dimensional speed of a particle in
terms of the measurable quantities, then, similar to the continuous case, we
obtain the measurable 4–speed as follows:

ũµ =
`2

h̄
(pN∆xµ

)

∆s(pN∆xµ
)

= (
1√

1− υ̃2
,

υ̃√
1− υ̃2

). (84)

According to (84), ũµ is a function of (pN∆xµ
) and of ∆s(pN∆xµ

), i.e., we have

ũµ ≡ ũµ[(pN∆xµ
)] ≡ ũµ[∆s(pN∆xµ

)]. (85)

Then it is assumed that all measurable variations in ∆s(pN∆xµ
) are generated

by the measurable variations of (pN∆xµ
). For any fixed set N∆xµ having the

attribute of (59), we can find a set (possibly, not a single one) N
′
∆xµ satisfying

the same attribute and minimizing the following expression:

|∆s(p
N

′
∆xµ

) −∆s(pN∆xµ
)| = min|∆s(p

N
′′
∆xµ

) −∆s(pN∆xµ
)|
.
= |∆̃s(pN∆xµ

)|,

|N ′

∆xµ | � 1, (∆s(p
N

′′
∆xµ

) 6= ∆s(pN∆xµ
)). (86)

It is obvious that

lim
|N∆xµ |→∞

∆̃s(pN∆xµ
) = 0. (87)
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Then we denote

∆̃ũµ[∆s(pN∆xµ
)]

∆̃s(pN∆xµ
)

.
=

ũµ[∆s(p
N

′
∆xµ

)]− ũµ[∆s(pN∆xµ
)]

∆s(p
N

′
∆xµ

) −∆s(pN∆xµ
)

. (88)

Formula (88) is a measurable analog of the continuous quantity duµ/ds rep-
resenting the 4-acceleration of the canonical theory.
In this case the 4-acceleration duµ/ds itself may be derived on going to the
limit as follows:

lim
(|N∆xµ |)→∞

∆̃ũµ[∆s(pN∆xµ
)]

∆̃s(pN∆xµ
)

.
=

∆̃uµ

∆̃s
=
duµ
ds

. (89)

3.2 Relativistic Mechanics in Terms of Measurable Quan-
tities

Now we can readily obtain measurable analogs of all the known quantities in
the continuous case.
Specifically, an analog of the operation for a free particle in the continuous
case [41]

S = −β
∫ b

a
ds (90)

in the present formalism is replaced by the sum

S(N∆xµ )
.
= −β

b∑
a

∆s(pN∆xµ
), (91)

where the summation in the left-hand side is performed by the steps ∆s(pN∆xµ
)

along the world line between the two specified events a and b for the particle
at the initial and at the finite points in the particular instants of time t1 and
t2; β – certain variable.
Similarly, for the same operation written in the form of the Lagrangian L in
the continuous case

S =
∫ t1

t1
Ldt, (92)

in the present formalism we have

S(N∆xµ ) =
t2∑
t1

L(N∆xµ )
`

N∆x0

, (93)
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where in the general case all the variables, on which L(N∆xµ ) is dependent, are
measurable quantities in the sense of Definition 2. The sum in the right-hand
side (93) is taken by the steps `2

h̄
pN∆x0

= `
cN∆x0

= `
N∆x0

due to the fact that

c = 1.
In this case the three-dimensional speed υ in the initial Lagrangian L of a
continuous theory

L = −βc
√

1− υ2

c2
= −β

√
1− υ2, c = 1 (94)

should be replaced in L(N∆xµ ) by the three-dimensional measurable speed υ̃
varying in the time t not continuously but discretely by the steps `/N∆x0 .
All these definitions are easily extended to the case of a free particle having
the mass m. In particular, formulae (91),(93) in this case are of the form

: S(N∆xµ ) = −m
b∑
a

∆s(pN∆xµ
) (95)

and/ ,respectively,

S(N∆xµ ) =
t2∑
t1

L(N∆xµ )
`

N∆x0

, (96)

where the Lagrangian L, due to c = 1, is equal to

L(N∆xµ ) = −mc
√

1− υ̃2

c2
= −m

√
1− υ̃2. (97)

And υ̃ in the time t is varying discretely, as indicated in formula (94).
It is clear that in all the above-mentioned formulae there is a passage to the
limit from the measurable operation S(N∆xµ ) to the corresponding continuous
operation S

lim
(|N∆xµ |)→∞

S(N∆xµ ) = S. (98)

Similarly, for the momentum of a particle in the continuous case

p =
∂L

∂v
=

mv√
1− υ2

, (99)

we can easily find its measurable analog

p(N∆xµ ) =
mυ̃√
1− υ̃2

, (100)
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where υ̃–vector of the three-dimensional speed of a particle in terms of the
measurable quantities (formula (84)). Here, similar to the continuous case at
low speeds, we have |υ̃| � 1, (c = 1), and then p(N∆xµ ) = mυ̃.
In a similar way, for the fixed set (N∆xµ), we can obtain measurable variants
of all the quantities known in a continuous theory E , ... [41].
The corresponding quantities have the index (N∆xµ ).
Specifically, for the energy E(N∆xµ ), we have

E(N∆xµ ) = p(N∆xµ )υ̃ − L(N∆xµ ) =
m√

1− υ̃2
. (101)

And hence, for the Hamiltonian, we have H(N∆xµ )

H(N∆xµ ) =
√
p2

(N∆xµ ) +m2, (102)

with a limiting transition to a continuous theory

lim
(|N∆xµ |)→∞

p(N∆xµ ) = p;

lim
(|N∆xµ |)→∞

E(N∆xµ ) = E ;

lim
(|N∆xµ |)→∞

H(N∆xµ ) = H; ... (103)

In this section all the limiting transitions from the measurable variant of a
theory to the continuous variant may be derived using the results obtained in
[10].
Actually, as the Lagrangian L = L(υ) may be represented, to a high accuracy,
in the capacity of the function of measurable quantities, in this case of speed
υ̃ (with υ replaced by υ̃ and L(υ) replaced by Lmeas(υ̃)), the use of formulae
(61)–(64) from [10] leads to

lim
(|N∆x0

|)→∞

∆Lmeas(υ̃)

∆υ̃
= lim

υ̃→υ,∆υ̃→0

∆Lmeas(υ̃)

∆υ̃
=
∂L(υ)

∂υ
. (104)

Also, the approach may be illustrated by the limiting transition from a mea-
surable operation to the continuous operation lim

(|N∆xµ |)→∞
S(N∆xµ ) = S (formula

(98)). This transition follows directly from formulae (66)–(68) in [10].

4 Concluding Comments and Explanations

4.1. In the previous section we have proceeded from some fixed canonically
measurable basic set(pN∆xµ

). However, it is obvious that the orbit of LG
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(66)(retaining the quadratic form (61)), involves many canonically measur-
able basic sets rather than one. In particular, for the operation of a group of
spatial rotations O(3), spatial components of the basic set (pN∆xi

), i = 1, 2, 3
may switch their positions, generating another canonically measurable basic
set .

4.2. Let us denote the totality of all canonically measurable basic sets (pN∆xµ
)

as follows:

Bas(pN∆xµ
)
.
= {(pN∆xµ

, µ = 0, ..., 3), |N∆xµ | � 1}. (105)

Then, due to the fact that, within the constant factor `2/h̄, we have the equality
pN∆xµ

= `/N∆xµ , the set Bas(pN∆xµ
) is nothing else but the four-dimensional

lattice

Bas(pN∆xµ
) =

`

N∆x0

× `

N∆x1

× `

N∆x2

× `

N∆x3

=

= (
`

N∆xµ

)4, |(N∆xµ)| � 1. (106)

It is clear that the mapping τxµ of any of the components `/N∆xµ for the lattice
`/(N∆xµ)4 into the real interval ς, |ς| � 1:

τxµ : (
`

N∆xµ

) 7→ 1

N∆xµ

(107)

will be very close to the continuous mapping. For fairly high |N∆xµ| , this
mapping may be considered as continuous to any accuracy. In terms of the
lattice `/(N∆xµ)4 for |N∆xµ| → ∞ , this fact reflects the essence of all the
limiting transitions from a measurable variant of a theory to the continuous
one.
As noted above, Bas(pN∆xµ

) is not retained by LG but any element of this set

(pN∆xµ
) is converted to some element g(pN∆xµ

) (formula (66)) retaining the
Minkowskian metric in the measurable form, i.e., to the quadratic form (61).

4.3. Clearly, for sufficiently high |N∆xµ| � 1, all the calculations presented
in this section are practically independent of the set (N∆xµ). As |(N∆xµ)| is
growing, the transition from the fixed canonically measurable basic set (pN∆xµ

)

to the canonically measurable basic set (pN ′
∆xµ

), |N ′
∆xµ| ≥ |N∆xµ| may be con-

sidered as the component-wise multiplication by a set of the factors (τµ =
N∆xµ/N

′
∆xµ), |τµ| ≤ 1 with one and the same operation of LG.

But such a transition is impossible at high energies E ∝ EP , i.e., for |N∆xµ | ≈
1. The explanation is as follows: (i) the presentation becomes “appreciably
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discrete” because in this case the difference h̄

N
′
∆xµ

`
− h̄

N∆xµ`
is great (due to

|N∆xµ| ≈ 1) and there is no possibility to have nearly continuous mapping of
ς from 4.2.; (ii) based on formulae (10),(18), and so on from Section 2 of this
paper, for E ∝ EP , the quantity h̄

N∆xµ`
6= pN∆xµ

and, for small |(N∆xµ)|, the

momentum pN∆xµ
is of the form

pN∆xµ
= p(N∆xµ , GUP ) =

h̄

(N∆xµ − 1
4N∆,xµ

)`
(108)

where p(N∆xµ , GUP ) = p(Np, GUP ) is taken from formula (38) forNp = N∆xµ .
Since, for high |(N∆xµ)|, LG has the same effect on any set (pN∆xµ

) as on (dxµ)
for small |(N∆xµ)|, in accordance with the correspondence principle, LG must
affect the set (p(N∆xµ , GUP )) given by formula (108)in some other way.
Thus, in the proposed “measurable” presentation the Lorentz-invariance is
from the very beginning violated at high Plancks energies. This means that,
unlike the continuous presentation, where violation of the Lorentz-invariance
at Planck energies is a subject of investigation [42]–[45], in the considered case
this property is integrated (embedded) into the theory.
It should be noted that at high |(N∆xµ)| we deal with primarily measurable
variations, whereas at small |(N∆xµ)| we have the generalized-measurable
variations p(N∆xµ , GUP ) from formula (108). Consequently, we can state the
fact of the Lorentz-invariance violation on going from primarily measurable
quantities to generalized-measurable quantities.

4.4. In this way, based on the formulae in this section, we can conclude that,
for a set of the integers (N∆xµ), |(N∆xµ)| � 1 , with the use of the canonically

measurable basic set (pN∆xµ
) ( `

2

h̄
(pN∆xµ

)), we can construct a measurable
variant of Special Relativity as a certain discrete approximation. In essence,
this approximation may be called the lattice approximation due to formulae
(106), (107).
Besides, as formula (61) may be given in the form

∆s2
(pN∆xµ

) =
`4

h̄2ηµνpN∆xµ
pN∆xν

= ηµν`
2(αN∆xµ

αN∆xν
)1/2, (109)

where αN∆xµ
is a deformation parameter (formula (14),(19)...), the above-

mentioned discrete lattice approximation may be called the Special Relativity
deformation (in the sense of paper [39]).
For |(N∆xµ)| → ∞ or the same αN∆xµ

→ 0, this deformation goes to the
well-known (continuous) Special Relativity.
So, as |(N∆xµ)| is growing, we can have more and more accurate approximation
measurable towards a continuous theory.
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By the authors opinion, for sufficiently high |(N∆xµ)|, the measurable vari-
ant of Special Relativity gives a more realistic description than the continuous
canonical variant.
More precisely, the following may be suggested
Hypothesis.:
for any separate experiment in Special Relativity, there is the set (N∆xµ) so
that the measurable variant of Special Relativity constructed with respect
to this set can correspond to the results of this experiment with unimprovable
accuracy.

4.5. Returning to the beginning of this paper (Section 1), it may be stated
that in the suggested formalism of the measurable (discrete) variant of a the-
ory, as compared to the continuous variant, the infinitesimal quantities dxµ in
essence are replaced (within the constant factor `2/h̄) by the quantities pN∆xµ

which are dependent on all the three fundamental constants c, h̄, G, because
the minimal length ` ∝ lP is depending on them. However, this dependence is
not felt at all at low energies E;E � EP due to great numbers of |N∆xµ| or,
similarly, low numbers of 1/|N∆xµ | which are a measure of the energy scale.
The situation is changed drastically on going to high energies E;E ≈ EP . In
this case |N∆xµ| ≈ 1, in accordance with (1/|N∆xµ| � 0), pN∆xµ

is replaced by
p(N∆xµ , GUP ) from formula (108). Then the minimal length ` and hence all
the fundamental constants c, h̄, and G become important in a theory.
Thus, in the suggested formalism there are many measurable variants of Spe-
cial Relativity (at least, we have one for every canonical set (pN∆xµ

), |N∆xµ | �
1 but some of them are coincident (item 4.1.)). Nevertheless, due to the above
given formulae, the difference between these measurable variants is insignif-
icant.

Afterword

A measurable variant of Special Relativity is constructed only in terms of
the primarily measurable variations pN∆xµ

, |N∆xµ| � 1 by virtue of the fact
that in the “flat case” of the Minkowskian space the existent energies E are
considerably lower that the Planck energies E � EP .
Still it is obvious that, to construct a measurable variant of General Rela-
tivity (GR) at all the energy scales, we need both the primarily measur-
able variations pN∆xµ

, |N∆xµ | � 1 and generalized-measurable variations
p(N∆xµ , GUP ), |N∆xµ| ≈ 1 from formula (108). In authors opinion, such con-
struction should be realized jointly with a construction of a measurable vari-
ant for Quantum Theory (QT).
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