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gravity in terms of the variations (increments) dependent on the existent
energies
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The principal idea of this papers is as follows:

(1.1) Within a discrete model for continuous
space-time, at low energies (which are far from the
Planck energies) the results, to a high accuracy, are
identical to those obtained by a continuous model
for space-time (and in this case may be called the
quasi-continuous model). But at high (Planck’s)
energies the indicated model is fundamentally
discrete, leading to principally new results.

(1.2) All variations in any physical system
considered in such a discrete model should be
dependent on the existent energies.




Minimal Length, Minimal Inverse
Temperature, and Measurability

Generalized Uncertainty Principles in Quantum Theory and
Thermodynamics




Heisenberg Uncertainty Principle (relation) for momentum -
coordinate:

h
Ax ZE.(Z)

It was shown that at the Planck scale a high-energy term must appear:

Ax>—+alZAp( 3)

where L, is the PIanck length l,z, Gh/c3;1,6 107**>mand a'is a
constant. Relation (3) is quadratic in Ap

a'l; (Ap)* —h AxAp + h* < 0 (4)
and therefore leads to the fundamental length

AXpin = 2Va'l, (5)




(3) is called the Generalized Uncertainty Principle (GUP) in Quantum

Theory.
(3) gives

=2 A—pc +a'l2 2L, (6)
then

At>— +a't] = (7)

where t, is the Planck time t,, = ,/c = y/Gh/c>; 0,54 10™*3sec.

tmin = 2Va't,  (8)

Thus, the inequalities discussed can be rewritten in a standard form

(
Ax = + (Ap) I
Ppl Ppl

< AE\ h (9)
Atz (3) E
L AE E,) Ep

where P,; = E,/c = \/hc3/G.




Now we consider the thermodynamics uncertainty relations between the inverse
temperature and interior energy of a macroscopic ensemble

(kg is the Boltzmann constant) (10)

)

(Uncertainty Principle in Thermodynamics UPT)

It is obvious from the above inequalities that at very high energies the capacity of the heat
bath can no longer to be assumed infinite at the Planck scale. Indeed, the total energy of
the pair heat bath - ensemble may be arbitrary large but finite merely as the universe is
born at a finite energy. Hence the quantity that can be interpreted as the temperature of
the ensemble must have the upper limit and so does its main quadratic deviation. In other

words the quantity A(1/T) must be bounded from below. But in this case an additional
term should be introduced into (10)

>k

A —Z n AU, (n is a coefficient) (11)

1
T —

(Generalized Uncertainty Principle in Thermodynamics -- GUPT)




Dimension and symmetry reasons give

kg 1 kp
== orn=a — (12)
n E2 n E2
As in the previous cases inequality (11) leads to the fundamental (inverse)

temperature.

T _ A _ E, _ Ty . h
max — 2\/a’tpkB o 2\/(1”(3 2V tminkB, (13)
B L = 1 — Umin
min kBTmax h

Thus, we obtain the system of generalized uncertainty relations in a
symmetric form

( h Ap\ &
Ax > —+a’(—>—+
Ap Ppl Ppl
Ao (AE) A
J At = gt a (E,,) B +... (14)
1 kg , (AU kg
- > == — | ==
\A = AU+ (E,,) E,,+




or in the equivalent form

Ax = Ap+“lp h+...
h .o AE
At = E+at,2,7+... (15)

1 kg 1 AU
A- = —+a5—+..
T AU+aT§, kg

where the dots mean the existence of higher order corrections.

Here T, is the Planck temperature: T, = E,, /kpg.

In this case, without the loss of generality and for symmetry, it is
assumed that a dimensionless constant in the right-hand side of
GUP and in the right-hand side of GUPT is the same -- .
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Definition I. Let us call as primarily measurable variation any small variation
(increment) [lxﬂ of any spatial coordinate x, of the arbitrary point x,,, 4 =
1,...,3 in some space-time system R if it may be realized in the form of the
uncertainty (standard deviation) Ax, when this coordinate is measured within the
scope of Heisenberg's Uncertainty Principle (HUP):

~ h
Ax” = Ax”,Ax” = E'” =1,2,3 (2a)

for some Ap,, # 0.

Similarly, for u = 0 for pair “‘time-energy" (t, E), let's call any small variation
(increment) by primarily measurable variation in the value of time Ax, = At if
it may be realized in the form of the uncertainty (standard deviation) Ax, = At
and then

~ h
At = At, At = F (2b)

for some AE + 0.

Here HUP is given for the nonrelativistic case. In the relativistic case HUP has the
distinctive features which, however, are of no significance for the general
formulation of Definition I.




It is clear that at low energies E < Ep (momenta P < P,;) Definition I. sets a
lower bound for the primarily measurable variation Zx“ of any space-time
coordinate x,,.

At high energies E (momenta P) this is not the case if E (P) have no upper limit.
But, according to the modern knowledge, E (P) are bounded by some maximal
quantities Ey, gx) (Prax)

E<E,.oP < Ppax (16)

where in general E,;, 4, Pngx May be on the order of Planck quantities E,;, 5, <
Ep, Pnax < Pp; and also may be the trans-Planck's quantities.

In any case the quantities P,,,, and E,,,4, lead to the introduction of the minimal
length L,,,;;, and of the minimal time t,,,;;,.

Supposition Il. There is the minimal length l,,,;,, as a minimal measurement unit
for all primarily measurable variations having the dimension of length, whereas
the minimal time t,,,;,, = l,hin/C as a minimal measurement unit for all quantities
or primarily measurable variations (increments) having the dimension of time,
where c is the speed of light.

For definiteness, we consider that E,,,,, and P,,4, are the quantities on the order
of the Planck quantities, then [,,,;;, and t,,,;;, are also on the order of Planck
quantities Ly,i, X lp, tiin X tp.




Definition I. and Supposition Il. are quite natural in the sense that there are no
physical principles with which they are inconsistent.

The combination of Definition I. and Supposition Il. will be called the Principle of
Bounded Primarily Measurable Space-Time Variations (Increments) or for short
Principle of Bounded Space-Time Variations (Increments) with abbreviation
(PBSTV).

As the minimal unit of measurement [,,,;,, is available for all the primarily
measurable variations AL having the dimensions of length, the “Integrality
Condition" (IC) is the case

AL = Np;lin, Nap> Ois aninteger number (17a)
In a like manner the same "““Integrality Condition" (IC) is the case for all the
primarily measurable variations At having the dimensions of time. And similar for

any time At:

At = Nagtmin,  (17D)




Definition 1 (Primary or Elementary Measurability.)

(1) /n accordance with the PBSTV let us define the quantity having the dimensions
of length l or time t as primarily (or elementarily) measurable, when it satisfies
the relation Egs. (17a) ((17b)).

(2) Let us define any physical quantity primarily (or elementarily) measurable,
when its value is consistent with points (1) of this Definition.

It is convenient to use the deformation parameter a. This is a deformation
parameter on going from the canonical guantum mechanics to the quantum
mechanics at Planck's scales (early Universe) that is considered to be the
guantum mechanics with the minimal length (QMML):

a, = 12, /a%, ais the measuring scale (18)
a. = lZ /aZ — lwznin _ 1 (19)
a min Ngliz’nln Nﬁ '




It is evident that «, is irregularly discrete.
It should be noted that, physical primarily measurable quantities won't be
enough for the research of physical systems.

Indeed, such a variable as

lrznin
ANl min (Nalimin) = P(Ny) T Lin/N a (20)

where AN, = Xadta = Nglmin, P(Ng) =

is the corresponding

N almin

primarily measurable momentum), is fully expressed in terms only Primarily
Measurable Quantities of Definition 1 and that's why it may appear at any stage
of calculations, but apparently doesn't comply with Definition 1. That's why it's
necessary to introduce the following definition generalizing Definition 1:

Definition 2. Generalized Measurability

We shall call any physical quantity as generalized-measurable or for simplicity
measurable if any of its values may be obtained in terms of Primarily
Measurable Quantities of Definition 1.

In what follows, for simplicity, we will use the term Measurability instead of
Generalized Measurability.

It is evident that any primarily measurable quantity (PMQ) is measurable.
Generally speaking, the contrary is not correct.




The generalized-measurable quantities are appeared from the Generalized
Uncertainty Principle (GUP):

AxXpin = 2Va' L, = Ly,  (21)

For convenience, we denote the minimal length [,,,;;, # 0 by £ and t,,,;;;, # 0 by
T=4*/c.

Solving nequality a’l3 (Ap)* — h AxAp + h?* < 0, in the case of equality we
obtain the apparent formula

(Ax+ \/ (Ax)2—4a'I5)h
Ap, = - . (22

Next, into this formula we substitute the right-hand part of formula (17a) for L =
x. Then:

(Naxty (Nax)?—D)ht
Api - 1{)2 -
2

_ 2(Npxty (Nax)2 -1
= p .

(23)




But it is evident that at low energies E < E); Nay, > 1 the plus sign in the
nominator (23) leads to the contradiction as it results in very high (much greater
than the Planck’s) values of Ap. Because of this, it is necessary to select the minus
sign in the numerator (23). Then, multiplying the left and right sides of (23) by the

same number Ny, + /NAZx — 1, we get

2h
Ap = (23a)

(Nax+ [N3.—1)¢

Ap from formula (23a) is the generalized-measurable quantity in the sense of
Definition 2. However, it is clear that at low energies E K E,, i.e. for Ny, > 1, we

have /NAZX — 1 = Nj,. Moreover, we have
lim /Nf\x —1=Np,. (24)
Npy—




Therefore, in this case (23a) may be written as follows:

n no_h

Ap = Ap(Nax, HUP) = ~ Nagt  Ax’

Np, > 1
1/2(Nax+ [Ni . —1)¢

(23.HUP)

in complete conformity with HUP. Besides, Ap = Ap(Nx,, HUP), to a high accuracy,
is a primarily measurable quantity in the sense of Definition 1.

And vice versa it is obvious that at high energies E = E,, i.e. for Ny, = 1, we can

write

Ap = Ap(N,, GUP) = h Ny, ~ 1.

1/2(Npx+ [N%2,—-1)¢

(23GUP)

At the same time, Ap = Ap(Na,, GUP) is a Generalized Measurable quantity in
the sense of Definition 2.

Thus, we have
GUP - HUP (25a)
for
(NAx ~ 1) - (NAx >> 1)-
Also, we have
Ap(N,,, GUP) —» Ap(N,,, HUP), (25b)




Comment 2*

From the above formulae it follows that, within GUP, the primarily measurable
variations (quantities) are derived to a high accuracy from the generalized-
measurable variations (quantities) only in the low-energy limit E < Ep

Next, within the scope of GUP, we can correct a value of the parameter a, from

substituting a for Ax in the expression Ny, + /NAZx — 1.

Then at low energies E < E, we have the primarily measurable quantity a,(HUP)

1 1
a, =a,(HUP) = ~—;Ng>1,
T 172+ (M-pp - Va0 (263)
Accordingly, at high energies we have E' = E,,
1
a, = a,(GUP) = ; N, = 1.
o [1/2(Nat [N2-D]2 (26b)

When going from high energies E = E), to low energies £ < E,,,
we can write

(Ng=1)>(Ng>1)
ﬁ

a,(GUP) a,(HUP) (26c)

in complete conformity to Comment 2*.
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Now, let us return to the thermodynamic relation in the case of equality:

=—+4+n AU, (27a)
that is equivalent to the quadratic equation
1 (AU)? — AZAU + kp = 0. (27b)

The discriminant of this equation is equal to

D=2 _anky, = a2 — 40’2 > 0
T hKpg T g2 = U

p

leading directly to (A %)mm

(A D min = 2Var' 2 (27d)

p

(27¢)




or, due to the fact that kg is constant, we have

1 2Va'
(AM)min — E: .(27e)

It is clear that (A %)min corresponds to Thy, 4y
Tinax = Tp > 0. (27f)

. 1 1
In this case A; ~ o and, of course, we can assume that

1

(%)min =T= (27g)

Tmax

Trying to find from formula (27g) a minimal unit of measurability for the inverse
temperature and introducing the “'Integrality Condition" (IC)

% = Ny %, Nyyr > 0is an integer number (27h)

analog of the primary measurability notion into thermodynamics.




Definition 3 (Primary Thermodynamic Measurability)

(1) Let us define a quantity having the dimensions of inverse temperature as
primarily measurable when it satisfies the relation (27h).

(2) Let us define any physical quantity in thermodynamics as primarily measurable
when its value is consistent with point (1) of this Definition.

Definition 3 in thermodynamics is analogous to the Primary Measurability in a
guantum theory ( Definition 1).

Now we consider the quadratic equation (27b) in terms of measurable quantities in
the sense of Definition 3. In accordance with this definition we can write

A% = Naa/mT, Naar)> 0is aninteger number (28a)

This quadratic equation takes the following form:




we can find the "' measurable' roots of this equation:

[Nac/myE [Nim—117
(AU)meas,i = —

2n -

2 ~
B 2kg[Na(1/mt /NA(l/T)_l]T _ (28¢)

:EZ

2kp[Na/m* /N§(1/T)—1]

~

T

72

The last line in is associated with the obvious relation 2n = %
B

In this way we derive a complete analog of the corresponding relation from a
qguantum theory by replacement

Ap+ = AUjeas,+; Nax = Naa ) it = kp. (28d)

As, for low temperatures and energies, T < Ty, X T}, we have 1/T > 1/T, and
hence A(1/T) > 1/T,, and Np(q1 /1y > 1.

Next, in analogy with Subsection 2.2, we can have only the minus-sign root,
otherwise, at sufficiently high Na(q /7y > 1 for (AU)pmeqs,+ We can get

(AU)meas,+ > Ep . But this is impossible for low temperatures (energies).




On the contrary, the minus sign in (28c) is consistent with high and low energies.
So, taking the root value in (28c) corresponding to this sign and multiplying the

nominator and denominator in (28c) by N /) + \/NAZ(l/T) — 1, we obtain
kp

(AU)meas — 28
%(NA(l/T)t /Nﬁ(lm—l)f (28e)

to have a complete analog of the corresponding relation from quantum theory by
substitution.

Then it is clear that, in analogy with QT, for low energies and temperatures
Na1/m) > 1 may be rewritten as

kp

(AU)meas = (AU)meas(T K Tpax) = 1 . -
E(NA(l/T)*',/NAu/T)—l)T
kg
~———:,N > 1,

(28f)

i.e. the Uncertainty Principle in Thermodynamics (UPT) is involved. In this case,
due to the last formula, AU,,,04s represents a primarily measurable
thermodynamic quantity in the sense of Definition 3 to a high accuracy.




Of course, at high energies the last term in the formula (28f) is lacking and, for
T = Tinax; Naciym = 1, we have:

kp
(AU)meas = (AU)pmeas(T = Topgy) = )
1/2(Nag1/my+ /Ng(l =D
NA(I/T) ~ 1.

(28g)

From (28g) it follows that at high temperatures (energies) (AU)peqs could
hardly be a primarily measurable thermodynamic quantity. Because of this, it is
expedient to use a counterpart of Definition 2.




Definition 4. Generalized Measurability in Thermodynamics

Any physical quantity in thermodynamics may be referred to as generalized-
measurable or, for simplicity, measurable if any of its values may be obtained in
terms of the Primary Thermodynamic Measurability of Definition 3.

In this way (AU)eqs from the formula (28g) is a measurable quantity.

Based on the preceding formulae, it is clear that we have the limiting transition

(Nacy/my=1D)—->(Na/m>1)
_)

(AU)meas (T ~ Tmax) (AU)meas (T < Tmax X Tp)’

that is analogous to the corresponding formula in a quantum theory.

Therefore, in this case the analog of Comment 2*. in Subsection 2.2 is valid.




Comment 2* Thermodynamics

From the above formulae it follows that, within GUPT , the primarily measurable
variations (quantities) are derived, to a high accuracy, from the generalized-
measurable variations (quantities) only in the low-temperature limit T < T, 4, X
T,.

R2.1 It is obvious that all the calculations associated with measurability of inverse
1 . 1 . . : 5
temperature _are valid for § = - as well. Specifically, introducing B,,in = f =
B

T/kg, we can rewrite all the corresponding formulae in the
"measurable" variant replacing 1/T (A(1/T)) by 8,7 by B and retaining Ny /7

(Nac1/my)-

R2.2. Naturally, the problem of compatibility between the measurability
definitions in quantum theory and in thermodynamics arises: is there any
contradiction between Definition 1 from Subsection 2.2 and Definitions 3 from
Subsection 2.3 ?




On the basis of the previous formulae we can state:

measurability in guantum theory and thermodynamic measurability are
completely compatible and consistent as the minimal unit of inverse temperature ©
is nothing else but the minimal time t,,,;,, = T up to a constant factor. And hence
N1 ,7, (Nac1/1)) is nothing else but N, (Ny¢). Then it is clear that Ny = Ng—¢c.

R2.3 Finally, from the above formulae it follows that the measurable temperature
T is varying as follows:

T'max _ .
T = F/T,T = Tmax X Tper/T > 1;

T
T = maz T = Tpax X Tp,Nqj7 = 1.
1/2(Ny/r+ N3 /p—1)

(28h)

In such a way measurable temperature is a discrete quantity but at low energies
it is almost constantly varying — so, the theoretical calculations are very similar to
those of the well-known continuous theory. In the reality, discreteness manifests
itself in the case of high energies only.
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Now let us show the applicability this results to a quantum theory of black
holes. Consider the case of Schwarzschild’s black hole. It seems logical to
support the idea suggested in the Introduction to the recent overview
presented by seven authors

Gerard 't Hooft, Steven B. Giddings, Carlo Rovelli, Piero Nicolini,

Jonas Mureika, Matthias Kaminski, and Marcus Bleicher, The Good,

the Bad, and the Ugly of Gravity and Information, [arXiv:1609.01725v1
[hep-th] 6 Sep 2016]:

""'Since for (asymptotically flat Schwarzschild) black holes the temperatures
increase as their masses decrease, soon after Hawking’s discovery, it became
clear that a complete description of the evaporation process would
ultimately require a consistent quantum theory of gravity. This is necessary
as the semiclassical formulation of the emission process breaks down during
the final stages of the evaporation as characterized by Planckian values of
the temperature and spacetime curvature".




Naturally, it is important to study the transition from low to high energies in the
indicated case.

In this Section consideration is given to gravitational dynamics at low E < E}, and at
high E = E), energies in the case of the Schwarzschild black hole and in a more
general case of the space with static spherically-symmetric horizon in space-time in
terms of measurable quantities from the previous Section.

It should be noted that such spaces and even considerably more general cases have
been thoroughly studied from the viewpoint of gravitational thermodynamics in
remarkable works of professor T. Padmanbhan

The case of a static spherically-symmetric horizon in space-time is considered, the
horizon being described by the metric ‘

ds? = —f(r)ctdt? + f1(r)dr? + r2dQ2.  (29) | |

& i b,ﬂ
The horizon location will be given by a simple zero of the function f(r), at the

radius r = a.
Then at the horizon r = a Einstein's field equations

¢/ @a—3] = 4npa 02

where P = T is the trace of the momentum-energy tensor and radial pressure.
Therewith, the condition f(a) = 0 and f'(a) # 0 must be fulfilled.




On the other hand it is known that for horizon spaces one can introduce the
temperature that can be identified with an analytic continuation to imaginary
time. In the case under consideration

_ hefr(a)
kpgT = yp (31)
It is shown that in the initial (continuous) theory the Einstein Equation for
horizon spaces in the differential form may be written as a thermodynamic
identity (the first principle of thermodynamics)

hefr(@ ¢ (1 2\ _ 1c*da_ 4m 3
4w Gh (44”‘1) 2 G _Pd(3 a ) (30b)

kgT ds —dE Pdv

where, as noted above, T -- temperature of the horizon surface, S --
corresponding entropy, E-- internal energy, VV -- space volume.

It is impossible to use (30b) in the formalism under consideration because, as
follows from the given results da, dS, dE, dV are not measurable quantities.




First, we assume that a value of the radius r at the point a is a primarily
measurable quantity in the sense of Definition1i.e.a = a,,.qs = N,¥, where
N, > 0 - integer, and the temperature T from the left-hand side of (31) is the
measurable temperature T = T,,,,, in the sense of Definition 3.

Then, in terms of measurable quantities, first we can rewrite (30a) as

c* [2rmkgT 1] 2
El e Ameas — E] = 4mPas, 4. (30c¢)

We express @ = Qyeq in terms of the deformation parameter a, (formula as

a="*fa 1/2, (30 a)

the temperature T is expressed in terms of Ty, 4, X T).

Then, considering that T), = E,/kpg, equation (30c) may be given as

4 nk,

c* 1/2 1 . 9
[—\/a,Nl/Thc fa, . -a,| = 4mwP£*. (30d)




Because £ = 2Va' l and l = E— we have
p

2nE ol/? 1 ¢t 2m 172 1

2mEp 1 1 2
G Ny rhe lya, = — 2ocal] == [_Nl/T a, . a,| = 4nPe-.
(30e)

Note that in its initial form this equation has been considered in a continuous
theory, i.e. at low energies E < E),. Consequently, in the present formalism it is
implicitly meant that the ""measurable counterpart" of this equation also initially
considered at low energies, in particular, Ny ;7 > 1.

Let us consider the possibility of generalizing (to high energies) taking two
different cases.




Measurable case for low energies: E K E,. Then a = ayeqs = Nyf, where
the integer number is N, >> 1 or similarly Ny, > 1. In this case GUP, to a high
accuracy, is extended to HUP.

As this takes place, a, = a,(HUP) is a primarily measurable quantity

( Definition 1), a, ~ N;?, though taking a discrete series of values but varying
smoothly, in fact continuously. (30e) is a quadratic equation with respect to

aé/z ~ N5 ! with the two parameters Nl_/%w and P. In this terms, the equation

(30e) may be rewritten as

4
C 2= a*(HUP) — 2 a,(HUP)] = AmP#2. (30f)
G "Nyr 2

So, at low energies the equation (30e) (or (30f)) written for the discretely-
varying a, may be considered in a continuous theory.

As a result, in the case under study we can use the basic formulae from a
continuous theory considering them valid to a high accuracy.




In particular, in the notation used for Schwarzschild's black hole,
we have

2
rg=Ngf =", M="2" (31.BH1)

As its temperature is given by the formula

T, = —"< (31.BH2)
H ™ gnemip’ .
at once we get
hc r‘wacll/2
Ty = AmkgN,e ~ Amkpt' (31.BH3)

Comparing this expression to the expression with high Ny ;7 (N, > 1) for
temperature, we can find that at low energies £ < E,,, due to comment R2.2.

from Subsection 2.3, the number N /1 is actually coincident with the number
N,:

~12(HUP). (31.BH4)

Nl/TzNa a

1/2

The substitution of the last expression into the quadratic equation (30f) for a

makes it a linear equation for a, with a single parameter P.




Measurable case for high energies: E =~ E,,. Then, a is the generalized measurable
quantity @ = aeqs = 1/2(Ny + /N2 — 1)£, with the integer N, ~ 1.

The quantity

1

AQmeas(q) =
e 2<Na+ /N5—1>£

=1/2(N2-1-Ny)¢ (32)

— N b=

may be considered as a quantum correction for the measurable radius r =
Ameas, that is infinitesimal at low energies E' < E), and not infinitesimal for high
energies £ = E,.




In this case there is no possibility to replace GUP by HUP. In equation (30e)
a, = a,(GUP) is a generalized measurable quantity ( Definition 2).
As noted in Comment R2.3, in this case the number Ny 1 is replaced by

1/2(Ny 7 + le/T — 1), i.e. the equation is of the form

c* [ 21 1/2
© 172Ny r+ [N p-1)
(33)

(GUP) — = aa(GUP)] 4P >,

In so doing the theory becomes really discrete, and the solutions of (33)
take a discrete series of values for every N, or (a,(GUP)) sufficiently close
to 1.

In this formalism for a ""quantum' Schwarzschild's black hole (i.e. at high
energies E' ~ E,) formula (31.BH3) is replaced by

o172
T4(Q) = e =2 70 (31.BH3Q)
kg (N g+ N5—1)e B

We should make several remarks which are important.




Remark 3.3.
The parameter a, = a,(HUP), within constant factors, is coincident with the
Gaussian curvature K, corresponding to primary measurable a = N,?:

£2 2
Qg =5 = “K,. (Gaussl)

Because of this, the transition from a,(HUP) to a,(GUP) may be considered
as a basis for "quantum corrections" to the Gaussian curvature K, in the high-
energy region £ = Ey,:

1 1,
9 2 92 _ NcZIBZ] -
1/4(Na+ Na—1)7¢ (Gauss1.c)

= fz(Kg — K,),

a,(GUP) — a,(HUP) = £*|

where the "measurable quantum Gaussian curvature " KC? is defined as

K = -

a

1/4(Ng+ |N%2-1)2¢2 - (Gauss1.Q)

In a similar way, we can derive a ""'measurable quantum correction " for the mass
M of a Schwarzschild black hole at high energies.




Remark 3.4.

A minimal value of N, = 1 is unattainable because in this case obtain a value of the
length [ that is below the minimum [ < [ for the momenta and energies above the
maximal ones, and that is impossible.

Thus, we always have N, > 2.

Remark 3.5. It is clear that we have the following transition:

(Ng=1)=>(Ng>1)
%

Eq.(33)(E ~ E,) Eq.(30f)(E < E,)

Remark 3.6. So, all the members of the gravitational equation apart from P, are
expressed in terms of the measurable parameter a,. From this it follows that P should
be also expressed in terms of the measurable parameter o, i.e. P = P(a,): E K E,,
P = Pla,(HUP)] at low energies and E = E,,P = P[a,(GUP)] at high energies.
Then, due to the above formulae, we can have for a "quantum' Schwarzschild black
hole the “ horizon” gravitational equation in terms of measurable quantities

(47— 1)< a,(GUP) = 8mP[a,(GUP)E?,

where a,(GUP) takes a discrete series of the values a,(GUP) = (1/2(N, +
JNZ —=1))72%; N, = 2 is a small integer.




Planck's Deformation of Basic Quantities

The results from the previous Section may be interpreted as follows: at high

energies i.e. at Planck's scales E = Ep, all the basic quantities [, ¢, T, and so

on written by measurable terms are modified (deformed).

In particular, we get

( (E=Ep)~(E~Ep) 1
l -

(L + V12 - £2)

2

(E=Ep)_’(EzEp) 1
4 t - E(t-l_ Vtz—’l’z) (P1)

1 (E=Ep)—-(E~Ep) 1 1 1.0 =9
T z(;+\/(;> -
In a similar way, we can obtain the high-energy (E = E,) "measurable"

deformation for all the other physical quantities P, E, U, ... initially specified
at low energies E = E,, in terms of measurable quantities.




Consequently, we can derive the "measurable” quantum corrections" A, for
[,t,1/T and so on:

(Bgl=2+VE— ) — 1= 1)

Mgt =5t +VEZE—8) —t=_(VEE -T2 - 1)
{ (P2)

rt=2((dr--h

L e

For for a "quantum' Schwarzschild's black entropy

1
AT (5 (Ny g+ N7 —1)8)?

Sschw,meas—q t’z/a’ (P3)

=ma' (N, + [Nz —1)=%




And a "measurable quantum correction' for the temperature T, for the mass

M and entropy S of a Schwarzschild black hole:

( he ol /z

1/2
AT =Ty(Q) — Ty = 1~ (2, (GUP) — a;]

(HUP)),

AgM = M(Q) — M = ‘;—"'; (a,/*(GUP) — a;/*(HUP)) =

2
_ ‘;( /N,%s —1- Nrs> —(Vrt—e2—r,), (p25)

AQS — SSchw,meas—q - SSchw,meas =

=ma' (N, + |Nf —1)* —4ma'N7 =

= ma’ <2N,,S /N,%S —1—-2N; — 1).
\

As indicated by the last formulae the measurable quantum corrections are
nothing else but the difference between the generalized measurable quantities
and the primarily measurable guantities.




Conclusion

In the general case the problem at hand is as follows:
the formulation of Gravity in terms of measurable quantities and also the
derivation of a solution in terms of measurable quantities.

This "measurable' Gravity -- discrete theory that is practically continuous at
low energies E' < E;, and very close to the Einstein theory, though with some
principal differences. By author’s opinion, in the low-energy "measurable"
variant of Gravity we should have no solutions without physical meaning,
specifically Godel's solution.

At high energies E ~ E,, this "measurable” Gravity should be really a discrete
theory enabling the transition to the low-energy "measurable' variant of
Gravity. Still it is obvious that, to construct a measurable variant of Gravity at
all the energy scales, in the general case we need both the primarily
measurable variations Ap(N 4,, HUP) and the generalized-measurable
variations Ap(N 4., GUP) from formula. The author believes that such
construction should be realized jointly with a construction of a measurable
variant for Quantum Theory (QT).
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