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The main target of these works is to construct a correct quantum theory and 
gravity in terms of the variations (increments) dependent on the existent 
energies

By the author’s opinion, these problems are solvable but beyond the paradigm 
of continuous space-time.
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The principal idea of this papers is as follows: 
(1.1) Within a discrete model for continuous 

space-time, at low energies (which are far from the 
Planck energies) the results, to a high accuracy, are 
identical to those obtained by a continuous model 
for space-time (and in this case may be called the 
quasi-continuous model). But at high (Planck’s) 
energies the indicated model is fundamentally 
discrete, leading to principally new results. 

(1.2) All variations in any physical system 
considered in such a discrete model should be 
dependent on the existent energies. 



Generalized Uncertainty Principles in Quantum Theory and   

Thermodynamics



Heisenberg Uncertainty Principle (relation) for momentum -
coordinate: 

𝚫𝒙 ≥
ℏ

𝚫𝒑
. (2)

It was shown that at the Planck scale a high-energy term must appear: 

𝚫𝒙 ≥
ℏ

𝚫𝒑
+ 𝜶′𝒍𝒑

𝟐 𝜟𝒑

ℏ
(3)

where 𝒍𝒑 is the Planck length 𝒍𝒑
𝟐 = 𝐺ℏ/𝑐3; 1,6 10−35𝑚 and 𝛼′ is a 

constant. Relation (3) is quadratic in 𝚫𝒑

𝜶′𝒍𝒑
𝟐 (𝚫𝒑)𝟐 − ℏ 𝚫𝒙𝚫𝒑 + ℏ𝟐 ≤ 𝟎 (4)

and therefore leads to the fundamental length 

𝚫𝒙𝒎𝒊𝒏 = 𝟐√𝜶′𝒍𝒑 (5)



(3) is called the Generalized Uncertainty Principle (GUP) in Quantum 
Theory. 

(3) gives 
𝚫𝒙

𝒄
≥

ℏ

𝚫𝒑𝒄
+ 𝜶′𝒍𝒑

𝟐 𝚫𝒑

𝒄ℏ
, (6)

then 

𝚫𝒕 ≥
ℏ

𝚫𝑬
+ 𝜶′𝒕𝒑

𝟐 𝚫𝑬

ℏ
. (7)

where 𝑡𝑝 is the Planck time 𝑡𝑝 = 𝑙𝑝/𝑐 = 𝐺ℏ/𝑐5; 0,54 10−43𝑠𝑒𝑐. 

𝒕𝒎𝒊𝒏 = 𝟐 𝜶′𝒕𝒑 (8)

Thus, the inequalities discussed can be rewritten in a standard form 

𝚫𝒙 ≥
ℏ

𝚫𝒑
+ 𝜶′ 𝚫𝒑

𝑷𝒑𝒍

ℏ

𝑷𝒑𝒍

𝚫𝒕 ≥
ℏ

𝚫𝑬
+ 𝜶′ 𝚫𝑬

𝑬𝒑

ℏ

𝑬𝒑

(9)

where 𝑃𝑝𝑙 = 𝐸𝑝/𝑐 = ℏ𝑐3/𝐺. 



Now we consider the thermodynamics uncertainty relations between the inverse 
temperature and interior energy of a macroscopic ensemble 

𝚫
𝟏

𝑻
≥

𝒌𝑩

𝚫𝑼
, (𝑘𝐵 is the Boltzmann constant) (10)

(Uncertainty Principle in Thermodynamics UPT)

It is obvious from the above inequalities that at very high energies the capacity of the heat 
bath can no longer to be assumed infinite at the Planck scale. Indeed, the total energy of 
the pair heat bath - ensemble may be arbitrary large but finite merely as the universe is 
born at a finite energy. Hence the quantity that can be interpreted as the temperature of 
the ensemble must have the upper limit and so does its main quadratic deviation. In other 

words the quantity Δ(1/𝑇) must be bounded from below. But in this case an additional 
term should be introduced into (10)

𝚫
𝟏

𝑻
≥

𝒌𝑩

𝚫𝑼
+ 𝜼 𝚫𝑼, (𝜼 is a coefficient) (11)

(Generalized Uncertainty Principle in Thermodynamics -- GUPT)



Dimension and symmetry reasons give 

𝜼 =
𝒌𝑩

𝑬𝒑
𝟐 𝒐𝒓 𝜼 = 𝜶′ 𝒌𝑩

𝑬𝒑
𝟐 (12)

As in the previous cases inequality (11) leads to the fundamental (inverse) 
temperature. 

𝑻𝒎𝒂𝒙 =
ℏ

𝟐√𝜶′𝒕𝒑𝒌𝑩
=

𝑬𝒑

𝟐√𝜶′𝒌𝑩
=

𝑻𝒑

𝟐√𝜶′ =
ℏ

𝒕𝒎𝒊𝒏𝒌𝑩
,

𝜷𝒎𝒊𝒏 =
𝟏

𝒌𝑩𝑻𝒎𝒂𝒙
=

𝒕𝒎𝒊𝒏

ℏ

(13)

Thus, we obtain the system of generalized uncertainty relations in a 
symmetric form 

𝚫𝒙 ≥
ℏ

𝚫𝒑
+ 𝜶′ 𝚫𝒑

𝑷𝒑𝒍

ℏ

𝑷𝒑𝒍
+. . .

𝚫𝒕 ≥
ℏ

𝚫𝑬
+ 𝜶′ 𝚫𝑬

𝑬𝒑

ℏ

𝑬𝒑
+. . .

𝚫
𝟏

𝑻
≥

𝒌𝑩

𝚫𝑼
+ 𝜶′ 𝚫𝑼

𝑬𝒑

𝒌𝑩

𝑬𝒑
+. . .

(14)



or in the equivalent form 

𝚫𝒙 ≥
ℏ

𝚫𝒑
+ 𝜶′𝒍𝒑

𝟐 𝚫𝒑

ℏ
+. . .

𝚫𝒕 ≥
ℏ

𝚫𝑬
+ 𝜶′𝒕𝒑

𝟐 𝚫𝑬

ℏ
+. . .

𝚫
𝟏

𝑻
≥

𝒌𝑩

𝚫𝑼
+ 𝜶′ 𝟏

𝑻𝒑
𝟐

𝚫𝑼

𝒌𝑩
+. . .

(15)

where the dots mean the existence of higher order corrections.

Here 𝑇𝑝 is the Planck temperature: 𝑻𝒑 = 𝑬𝒑/𝒌𝑩.

In this case, without the loss of generality and for symmetry, it is 
assumed that a dimensionless constant in the right-hand side of 
GUP and in the right-hand side of GUPT is the same -- 𝛼′.





Definition I. Let us call as primarily measurable variation any small variation 

(increment)  𝛥𝑥𝜇 of any spatial coordinate 𝑥𝜇 of the arbitrary point 𝑥𝜇, 𝜇 =

1, . . . , 3 in some space-time system 𝑅 if it may be realized in the form of the 
uncertainty (standard deviation) 𝛥𝑥𝜇 when this coordinate is measured within the 

scope of Heisenberg's Uncertainty Principle (HUP): 

 𝜟𝒙𝝁 = 𝜟𝒙𝝁, 𝜟𝒙𝝁 =
ℏ

𝜟𝒑𝝁
, 𝝁 = 𝟏, 𝟐, 𝟑 (2a)

for some 𝛥𝑝𝜇 ≠ 0.

Similarly, for 𝜇 = 0 for pair ``time-energy'' (𝑡, 𝐸), let's call any small variation 
(increment) by primarily measurable variation in the value of time  𝛥𝑥0 =  𝛥𝑡0 if 
it may be realized in the form of the uncertainty (standard deviation) 𝛥𝑥0 = 𝛥𝑡
and then 

 𝜟𝒕 = 𝜟𝒕, 𝜟𝒕 =
ℏ

𝜟𝑬
(2b)

for some 𝛥𝐸 ≠ 0. 
Here HUP is given for the nonrelativistic case. In the relativistic case HUP has the 
distinctive features  which, however, are of no significance for the general 
formulation of Definition I.



It is clear that at low energies 𝐸 ≪ 𝐸𝑃 (momenta 𝑃 ≪ 𝑃𝑝𝑙) Definition I. sets a 

lower bound for the primarily measurable variation  Δ𝑥𝜇 of any space-time 

coordinate 𝑥𝜇. 

At high energies 𝐸 (momenta 𝑃) this is not the case if 𝐸 (𝑃) have no upper limit. 
But, according to the modern knowledge, 𝐸 (𝑃) are bounded by some maximal 
quantities 𝐸𝑚𝑎𝑥, (𝑃𝑚𝑎𝑥) 

𝑬 ≤ 𝑬𝒎𝒂𝒙, 𝑷 ≤ 𝑷𝒎𝒂𝒙, (16)

where in general 𝐸𝑚𝑎𝑥 , 𝑃𝑚𝑎𝑥 may be on the order of Planck quantities 𝐸𝑚𝑎𝑥 ∝
𝐸𝑃, 𝑃𝑚𝑎𝑥 ∝ 𝑃𝑝𝑙 and also may be the trans-Planck's quantities.

In any case the quantities 𝑃𝑚𝑎𝑥 and 𝐸𝑚𝑎𝑥 lead to the introduction of the minimal 
length 𝑙𝑚𝑖𝑛 and of the minimal time 𝑡𝑚𝑖𝑛. 
Supposition II. There is the minimal length 𝑙𝑚𝑖𝑛 as  a minimal measurement unit 

for all primarily measurable variations having the dimension of length, whereas 
the minimal time 𝑡𝑚𝑖𝑛 = 𝑙𝑚𝑖𝑛/𝑐 as  a minimal measurement unit for all quantities 
or primarily measurable variations (increments) having the dimension of time, 
where 𝑐 is the speed of light.

For definiteness, we consider that 𝐸𝑚𝑎𝑥 and 𝑃𝑚𝑎𝑥 are the quantities on the order 
of the Planck quantities, then 𝑙𝑚𝑖𝑛 and 𝑡𝑚𝑖𝑛 are also on the order of Planck 
quantities 𝑙𝑚𝑖𝑛 ∝ 𝑙𝑃, 𝑡𝑚𝑖𝑛 ∝ 𝑡𝑃.



Definition I. and Supposition II. are quite natural in the sense that there are no 
physical principles with which they are inconsistent. 
The combination of Definition I. and Supposition II. will be called the Principle of 
Bounded Primarily Measurable Space-Time Variations (Increments) or for short 
Principle of Bounded Space-Time Variations (Increments) with abbreviation 
(PBSTV). 
As the minimal unit of measurement 𝑙𝑚𝑖𝑛 is available for all the primarily 
measurable variations Δ𝐿 having the dimensions of length, the ``Integrality 
Condition'' (IC) is the case 

𝚫𝑳 = 𝑵𝚫𝑳𝒍𝒎𝒊𝒏, 𝑁Δ𝐿> 0 is an integer number  (17a)

In a like manner the same ``Integrality Condition'' (IC) is the case for all the 
primarily measurable variations Δ𝑡 having the dimensions of time. And similar for 
any time Δ𝑡: 

𝚫𝒕 = 𝑵𝚫𝒕𝒕𝒎𝒊𝒏, (17b)



Definition 1 (Primary or Elementary Measurability.) 
(1) In accordance with the PBSTV let us define the quantity having the dimensions 
of length 𝒍 or time 𝒕 as primarily (or elementarily) measurable, when it satisfies 
the relation Eqs. (17a) ((17b)). 
(2) Let us define any physical quantity primarily (or elementarily) measurable, 
when its value is consistent with points (1) of this Definition.

It is convenient to use the deformation parameter 𝛼𝑎. This is a deformation 
parameter on going from the canonical quantum mechanics to the quantum 
mechanics at Planck's scales (early Universe) that is considered to be the 
quantum mechanics with the minimal length (QMML): 

𝜶𝒂 = 𝒍𝒎𝒊𝒏
𝟐 /𝒂𝟐, 𝒂 is the measuring scale (18)

𝜶𝒂 = 𝒍𝒎𝒊𝒏
𝟐 /𝒂𝟐 =

𝒍𝒎𝒊𝒏
𝟐

𝑵𝒂
𝟐𝒍𝒎𝒊𝒏

𝟐 =
𝟏

𝑵𝒂
𝟐 . (19)



It is evident that 𝜶𝒂 is irregularly discrete. 
It should be noted that, physical primarily measurable quantities won't be 
enough for the research of physical systems.

Indeed, such a variable as 

𝜶𝑵𝒂𝒍𝒎𝒊𝒏
(𝑵𝒂𝒍𝒎𝒊𝒏) = 𝒑(𝑵𝒂)

𝒍𝒎𝒊𝒏
𝟐

ℏ
= 𝒍𝒎𝒊𝒏/𝑵𝒂, (20)

where 𝜶𝑵𝒂𝒍𝒎𝒊𝒏
= 𝜶𝐚 at 𝑎 = 𝑁𝑎𝑙𝑚𝑖𝑛, 𝒑(𝑵𝒂) =

ℏ

𝑵𝒂𝒍𝒎𝒊𝒏
is the corresponding 

primarily measurable momentum), is fully expressed in terms only Primarily 
Measurable Quantities of Definition 1 and that's why it may appear at any stage 
of calculations, but apparently doesn't comply with Definition 1. That's why it's 
necessary to introduce the following definition generalizing Definition 1: 

Definition 2. Generalized Measurability
We shall call any physical quantity as generalized-measurable or for simplicity 
measurable if any of its values may be obtained in terms of Primarily 
Measurable Quantities of Definition 1. 

In what follows, for simplicity, we will use the term Measurability instead of 
Generalized Measurability. 
It is evident that any primarily measurable quantity (PMQ) is measurable. 
Generally speaking, the contrary is not correct. 



The generalized-measurable quantities are appeared from the Generalized 
Uncertainty Principle (GUP):

𝚫𝒙𝒎𝒊𝒏 = 𝟐 𝜶′ 𝒍𝒑 = 𝒍𝒎𝒊𝒏, (21)

For convenience, we denote the minimal length 𝑙𝑚𝑖𝑛 ≠ 0 by 𝓁 and 𝑡𝑚𝑖𝑛 ≠ 0 by 
𝜏 = 𝓁/𝑐. 
Solving nequality 𝛼′𝑙𝑝

2 (Δ𝑝)2 − ℏ Δ𝑥Δ𝑝 + ℏ2 ≤ 0, in the case of equality we 

obtain the apparent formula 

𝚫𝒑± =
(𝚫𝒙± (𝚫𝒙)𝟐−𝟒𝜶′𝒍𝒑

𝟐)ℏ

𝟐𝜶′𝒍𝒑
𝟐 . (22)

Next, into this formula we substitute the right-hand part of formula (17a) for 𝐿 =
𝑥. Then: 

𝚫𝒑± =
(𝑵𝚫𝒙± (𝑵𝚫𝒙)𝟐−𝟏)ℏ𝓵

𝟏

𝟐
𝓵𝟐

=

=
𝟐(𝑵𝚫𝒙± (𝑵𝚫𝒙)𝟐−𝟏)ℏ

𝓵
.

(23)



But it is evident that at low energies 𝐸 ≪ 𝐸𝑝; 𝑁Δ𝑥 ≫ 1 the plus sign in the 

nominator (23) leads to the contradiction as it results in very high (much greater 
than the Planck’s) values of Δ𝑝. Because of this, it is necessary to select the minus 
sign in the numerator (23). Then, multiplying the left and right sides of (23) by the 

same number 𝑁Δ𝑥 + 𝑁Δ𝑥
2 − 1 , we get 

𝚫𝒑 =
𝟐ℏ

(𝑵𝚫𝒙+ 𝑵𝚫𝒙
𝟐 −𝟏)𝓵

. (23a)

Δ𝑝 from formula (23a) is the generalized-measurable quantity in the sense of 
Definition 2. However, it is clear that at low energies 𝐸 ≪ 𝐸𝑝, i.e. for 𝑁Δ𝑥 ≫ 1, we 

have 𝑁Δ𝑥
2 − 1 ≈ 𝑁Δ𝑥. Moreover, we have 

𝐥𝐢𝐦
𝑵𝚫𝒙→∞

𝑵𝚫𝒙
𝟐 − 𝟏 = 𝑵𝚫𝒙. (24)



Therefore, in this case (23a) may be written as follows: 

𝚫𝒑 = 𝚫𝒑(𝑵𝚫𝒙, 𝑯𝑼𝑷) =
ℏ

𝟏/𝟐(𝑵𝚫𝒙+ 𝑵𝚫𝒙
𝟐 −𝟏)𝓵

≈
ℏ

𝑵𝚫𝒙𝓵
=

ℏ

𝚫𝒙
; 𝑵𝚫𝒙 ≫ 𝟏

(23.HUP)

in complete conformity with HUP. Besides, Δ𝑝 = Δ𝑝(𝑁Δ𝑥, 𝐻𝑈𝑃), to a high accuracy, 
is a primarily measurable quantity in the sense of Definition 1.

And vice versa it is obvious that at high energies 𝐸 ≈ 𝐸𝑝, i.e. for 𝑁Δ𝑥 ≈ 1, we can 

write 

𝚫𝒑 = 𝚫𝒑(𝑵𝚫𝒙, 𝑮𝑼𝑷) =
ℏ

𝟏/𝟐(𝑵𝚫𝒙+ 𝑵𝚫𝒙
𝟐 −𝟏)𝓵

; 𝑵𝚫𝒙 ≈ 𝟏. (23GUP)

At the same time, Δ𝑝 = Δ𝑝(𝑁Δ𝑥, 𝐺𝑈𝑃) is a Generalized Measurable quantity in 
the sense of Definition 2. 

Thus, we have 
𝑮𝑼𝑷 → 𝑯𝑼𝑷 (25a)

for 
(𝑵𝚫𝒙 ≈ 𝟏) → (𝑵𝚫𝒙 ≫ 𝟏).

Also, we have 
𝚫𝒑(𝑵𝚫𝒙, 𝑮𝑼𝑷) → 𝚫𝒑(𝑵𝚫𝒙, 𝑯𝑼𝑷), (25b)



Comment 2*.
From the above formulae it follows that, within GUP, the primarily measurable

variations (quantities) are derived to a high accuracy from the generalized-
measurable variations (quantities)  only in the low-energy limit 𝐸 ≪ 𝐸𝑃

Next, within the scope of GUP, we can correct a value of the parameter 𝛼𝑎 from  

substituting 𝑎 for Δ𝑥 in the expression 𝑁Δ𝑥 + 𝑁Δ𝑥
2 − 1. 

Then at low energies 𝐸 ≪ 𝐸𝑝 we have the primarily measurable quantity 𝛼𝑎(𝐻𝑈𝑃)

𝜶𝒂 = 𝜶𝒂(𝑯𝑼𝑷) =
𝟏

[𝟏/𝟐(𝑵𝒂+ 𝑵𝒂
𝟐−𝟏)]𝟐

≈
𝟏

𝑵𝒂
𝟐 ; 𝑵𝒂 ≫ 𝟏, (26a)

Accordingly, at high energies we have 𝐸 ≈ 𝐸𝑝

𝜶𝒂 = 𝜶𝒂(𝑮𝑼𝑷) =
𝟏

[𝟏/𝟐(𝑵𝒂+ 𝑵𝒂
𝟐−𝟏)]𝟐

; 𝑵𝒂 ≈ 𝟏. (26b)

When going from high energies 𝐸 ≈ 𝐸𝑝 to low energies 𝐸 ≪ 𝐸𝑝,

we can write 

𝜶𝒂(𝑮𝑼𝑷) →
(𝑵𝒂≈𝟏)→(𝑵𝒂≫𝟏)

𝜶𝒂(𝑯𝑼𝑷) (26c)

in complete conformity to Comment 2*.





Now, let us return to the thermodynamic relation  in the case of equality: 

𝚫
𝟏

𝑻
=

𝒌𝑩

𝚫𝑼
+ 𝜼 𝚫𝑼, (27a)

that is equivalent to the quadratic equation 

𝜼 (𝚫𝑼)𝟐 − 𝚫
𝟏

𝑻
𝚫𝑼 + 𝒌𝑩 = 𝟎. (27b)

The discriminant of this equation is equal to 

𝑫 = (𝚫
𝟏

𝑻
)𝟐 − 𝟒𝜼𝒌𝑩 = (𝚫

𝟏

𝑻
)𝟐 − 𝟒𝜶′ 𝒌𝑩

𝟐

𝑬𝒑
𝟐 ≥ 𝟎, (27c)

leading directly to (Δ
1

𝑇
)𝑚𝑖𝑛

(𝚫
𝟏

𝑻
)𝒎𝒊𝒏 = 𝟐√𝜶′ 𝒌𝑩

𝑬𝒑
(27d)



or, due to the fact that 𝑘𝐵 is constant, we have 

(𝚫
𝟏

𝒌𝑩𝑻
)𝒎𝒊𝒏 =

𝟐√𝜶′

𝑬𝒑
. (27e)

It is clear that (Δ
1

𝑇
)𝑚𝑖𝑛 corresponds to 𝑇𝑚𝑎𝑥

𝑻𝒎𝒂𝒙 ≈ 𝑻𝒑 ≫ 𝟎. (27f)

In this case Δ
1

𝑇
≈

1

𝑇
and, of course, we can assume that 

(
𝟏

𝑻
)𝒎𝒊𝒏 =  𝝉 =

𝟏

𝑻𝒎𝒂𝒙
. (27g)

Trying to find from formula (27g) a minimal unit of measurability for the inverse 
temperature and introducing the ``Integrality Condition'' (IC) 

1

𝑇
= 𝑁1/𝑇  𝜏, 𝑁1/𝑇 > 0 is an integer number (27h)

analog of the primary measurability notion into thermodynamics. 



Definition 3 (Primary Thermodynamic Measurability) 
(1) Let us define a quantity having the dimensions of inverse temperature as 
primarily measurable when it satisfies the relation  (27h). 
(2) Let us define any physical quantity in thermodynamics as primarily measurable
when its value is consistent with point (1) of this Definition. 

Definition 3 in thermodynamics is analogous to the Primary Measurability in a 
quantum theory ( Definition 1). 
Now we consider the quadratic equation (27b) in terms of measurable quantities in 
the sense of Definition 3. In accordance with this definition we can write 

𝚫
𝟏

𝑻
= 𝑵𝚫(𝟏/𝑻) 𝝉, 𝑵𝚫(𝟏/𝑻)> 𝟎 is an integer number (28a)

This quadratic equation takes the following form: 

𝜼 (𝚫𝑼)𝟐 − 𝑵𝚫(𝟏/𝑻) 𝝉𝚫𝑼 + 𝒌𝑩 = 𝟎. (28b)



we can find the '' measurable'' roots of   this  equation: 

(𝚫𝑼)𝒎𝒆𝒂𝒔,± =
[𝑵𝚫(𝟏/𝑻)± 𝑵𝚫(𝟏/𝑻)

𝟐 −𝟏] 𝝉

𝟐𝜼
=

=
𝟐𝒌𝑩[𝑵𝚫(𝟏/𝑻)± 𝑵𝚫(𝟏/𝑻)

𝟐 −𝟏] 𝝉

 𝝉𝟐 =

𝟐𝒌𝑩[𝑵𝚫(𝟏/𝑻)± 𝑵𝚫(𝟏/𝑻)
𝟐 −𝟏]

 𝝉
.

(28c)

The last line in  is associated with the obvious relation 2𝜂 =
 𝜏2

2𝑘𝐵
. 

In this way we derive a complete analog of the corresponding relation  from a 
quantum theory by replacement 

𝚫𝒑± ⇒ 𝚫𝑼𝒎𝒆𝒂𝒔,±; 𝑵𝚫𝒙 ⇒ 𝑵𝚫(𝟏/𝑻); ℏ ⇒ 𝒌𝑩. (28d)

As, for low temperatures and energies, 𝑇 ≪ 𝑇𝑚𝑎𝑥 ∝ 𝑇𝑝, we have 1/𝑇 ≫ 1/𝑇𝑝 and 

hence Δ(1/𝑇) ≫ 1/𝑇𝑝 and 𝑁Δ(1/𝑇) ≫ 1. 

Next, in analogy with Subsection 2.2, we can have only the minus-sign root, 
otherwise, at sufficiently high 𝑁Δ(1/𝑇) ≫ 1 for (Δ𝑈)𝑚𝑒𝑎𝑠,+ we can get 

(Δ𝑈)𝑚𝑒𝑎𝑠,+ ≫ 𝐸𝑝 . But this is impossible for low temperatures (energies). 



On the contrary, the minus sign in (28c) is consistent with high and low energies. 
So, taking the root value in (28c) corresponding to this sign and multiplying the 

nominator and denominator in (28c) by 𝑁Δ(1/𝑇) + 𝑁Δ(1/𝑇)
2 − 1, we obtain 

(𝚫𝑼)𝒎𝒆𝒂𝒔 =
𝒌𝑩

𝟏

𝟐
(𝑵𝚫(𝟏/𝑻)+ 𝑵𝚫(𝟏/𝑻)

𝟐 −𝟏) 𝝉
(28e)

to have a complete analog of the corresponding relation from quantum theory by 
substitution.
Then it is clear that, in analogy with QT, for low energies and temperatures 
𝑁Δ(1/𝑇) ≫ 1 may be rewritten as 

(𝚫𝑼)𝒎𝒆𝒂𝒔 = (𝚫𝑼)𝒎𝒆𝒂𝒔(𝑻 ≪ 𝑻𝒎𝒂𝒙) =
𝒌𝑩

𝟏

𝟐
(𝑵𝚫(𝟏/𝑻)+ 𝑵𝚫(𝟏/𝑻)

𝟐 −𝟏) 𝝉
≈

≈
𝒌𝑩

𝑵𝚫(𝟏/𝑻) 𝝉
, 𝑵𝚫(𝟏/𝑻) ≫ 𝟏,

(28f)
i.e. the Uncertainty Principle in Thermodynamics (UPT) is involved. In this case, 

due to the last formula, Δ𝑈𝑚𝑒𝑎𝑠 represents a primarily measurable
thermodynamic quantity in the sense of Definition 3 to a high accuracy. 



Of course, at high energies the last term in the formula (28f) is lacking and, for 
𝑇 ≈ 𝑇𝑚𝑎𝑥; 𝑁Δ(1/𝑇) ≈ 1, we have: 

(𝚫𝑼)𝒎𝒆𝒂𝒔 = (𝚫𝑼)𝒎𝒆𝒂𝒔(𝑻 ≈ 𝑻𝒎𝒂𝒙) =
𝒌𝑩

𝟏/𝟐(𝑵𝚫(𝟏/𝑻)+ 𝑵𝚫(𝟏/𝑻)
𝟐 −𝟏) 𝝉

,

𝑵𝚫(𝟏/𝑻) ≈ 𝟏.

(28g)

From (28g) it follows that at high temperatures (energies) (𝚫𝑼)𝒎𝒆𝒂𝒔 could 
hardly be a primarily measurable thermodynamic quantity. Because of this, it is 
expedient to use a counterpart of Definition 2. 



Definition 4. Generalized Measurability in Thermodynamics
Any physical quantity in thermodynamics may be referred to as generalized-
measurable or, for simplicity, measurable if any of its values may be obtained in 
terms of the Primary Thermodynamic Measurability of Definition 3. 

In this way (Δ𝑈)𝑚𝑒𝑎𝑠 from the formula (28g) is a measurable quantity. 

Based on the preceding formulae, it is clear that we have the limiting transition 

(𝚫𝑼)𝒎𝒆𝒂𝒔(𝑻 ≈ 𝑻𝒎𝒂𝒙) →
(𝑵𝚫(𝟏/𝑻)≈𝟏)→(𝑵𝚫(𝟏/𝑻)≫𝟏)

(𝚫𝑼)𝒎𝒆𝒂𝒔(𝑻 ≪ 𝑻𝒎𝒂𝒙 ∝ 𝑻𝒑),

that is analogous to the corresponding formula  in a quantum theory. 

Therefore, in this case the analog of Comment 2*. in Subsection 2.2 is valid. 



Comment 2* Thermodynamics
From the above formulae it follows that, within GUPT , the primarily measurable

variations (quantities) are derived, to a high accuracy, from the generalized-
measurable variations (quantities)  only in the low-temperature limit 𝑇 ≪ 𝑇𝑚𝑎𝑥 ∝
𝑇𝑝. 

R2.1 It is obvious that all the calculations associated with measurability of inverse 

temperature 
1

𝑇
are valid for 𝛽 =

1

𝑘𝐵𝑇
as well. Specifically, introducing 𝛽𝑚𝑖𝑛 =  𝛽 =

 𝜏/𝑘𝐵, we can rewrite all the corresponding formulae in the 
''measurable'' variant replacing 1/𝑇 (Δ(1/𝑇)) by 𝛽,  𝜏 by  𝛽 and retaining 𝑁1/𝑇

(𝑁Δ(1/𝑇)). 

R2.2. Naturally, the problem of compatibility between the measurability
definitions in quantum theory and in thermodynamics arises: is there any 
contradiction between Definition 1 from Subsection 2.2 and Definitions 3 from 
Subsection 2.3 ? 



On the basis of the previous formulae we can state: 

measurability in quantum theory and thermodynamic measurability are 
completely compatible and consistent as the minimal unit of inverse temperature  𝜏
is nothing else but the minimal time 𝑡𝑚𝑖𝑛 = 𝜏 up to a constant factor. And hence 
𝑁1/𝑇 , (𝑁𝛥(1/𝑇)) is nothing else but 𝑁𝑡, (𝑁𝛥𝑡). Then it is clear that 𝑁𝑡 = 𝑁𝑎=𝑡𝑐. 

R2.3 Finally, from the above formulae it follows that the measurable temperature 
𝑇 is varying as follows: 

𝑻 =
𝑻𝒎𝒂𝒙

𝑵𝟏/𝑻
, 𝑻 = 𝑻𝒎𝒂𝒙 ∝ 𝑻𝒑, 𝑵𝟏/𝑻 ≫ 𝟏;

𝑻 =
𝑻𝒎𝒂𝒙

𝟏/𝟐(𝑵𝟏/𝑻+ 𝑵𝟏/𝑻
𝟐 −𝟏)

, 𝑻 ≈ 𝑻𝒎𝒂𝒙 ∝ 𝑻𝒑, 𝑵𝟏/𝑻 ≈ 𝟏.
(28h)

In such a way measurable temperature is a discrete quantity but at low energies 
it is almost constantly varying – so, the theoretical calculations are very similar to 
those of the well-known continuous theory. In the reality, discreteness manifests 
itself in the case of high energies only.





Now let us show the applicability this  results to a quantum theory of black 
holes. Consider the case of Schwarzschild’s black hole. It seems logical to 
support the idea suggested in the Introduction to the recent overview 
presented by seven authors
Gerard 't Hooft, Steven B. Giddings, Carlo Rovelli, Piero Nicolini,
Jonas Mureika, Matthias Kaminski, and Marcus Bleicher, The Good,
the Bad, and the Ugly of Gravity and Information, [arXiv:1609.01725v1
[hep-th] 6 Sep 2016]:

''Since for (asymptotically flat Schwarzschild) black holes the temperatures 
increase as their masses decrease, soon after Hawking’s discovery, it became 
clear that a complete description of the evaporation process would 
ultimately require a consistent quantum theory of gravity. This is necessary 
as the semiclassical formulation of the emission process breaks down during 
the final stages of the evaporation as characterized by Planckian values of 
the temperature and spacetime curvature''. 



Naturally, it is important to study the transition from low to high energies in the 
indicated case. 
In this Section consideration is given to gravitational dynamics at low 𝐸 ≪ 𝐸𝑝 and at 

high 𝐸 ≈ 𝐸𝑝 energies in the case of the Schwarzschild black hole and in a more 

general case of the space with static spherically-symmetric horizon in space-time in 
terms of measurable quantities from the previous Section. 
It should be noted that such spaces and even considerably more general cases have 
been thoroughly studied from the viewpoint of gravitational thermodynamics in 
remarkable works of professor T. Padmanbhan

The case of a static spherically-symmetric horizon in space-time is considered, the 
horizon being described by the metric

𝒅𝒔𝟐 = −𝒇(𝒓)𝒄𝟐𝒅𝒕𝟐 + 𝒇−𝟏(𝒓)𝒅𝒓𝟐 + 𝒓𝟐𝒅𝛀𝟐. (29)

The horizon location will be given by a simple zero of the function 𝑓(𝑟), at the 
radius 𝑟 = 𝑎. 
Then at the horizon 𝑟 = 𝑎 Einstein's field equations 

𝒄𝟒

𝑮

𝟏

𝟐
𝒇′(𝒂)𝒂 −

𝟏

𝟐
= 𝟒𝝅𝑷𝒂𝟐 (30a)

where 𝑃 = 𝑇𝑟
𝑟 is the trace of the momentum-energy tensor and radial pressure. 

Therewith, the condition 𝑓(𝑎) = 0 and 𝑓′(𝑎) ≠ 0 must be fulfilled. 



On the other hand it is known that for horizon spaces one can introduce the 
temperature that can be identified with an analytic continuation to imaginary 
time. In the case under consideration 

𝒌𝑩𝑻 =
ℏ𝒄𝒇′(𝒂)

𝟒𝝅
. (31)

It is shown that in the initial (continuous) theory the Einstein Equation for 
horizon spaces in the differential form may be written as a thermodynamic 
identity (the first principle of thermodynamics) 

ℏ𝒄𝒇′(𝒂)

𝟒𝝅

𝒌𝑩𝑻

𝒄𝟑

𝑮ℏ
𝒅

𝟏

𝟒
𝟒𝝅𝒂𝟐

𝒅𝑺

−
𝟏

𝟐

𝒄𝟒𝒅𝒂

𝑮

−𝒅𝑬

= 𝑷𝒅
𝟒𝝅

𝟑
𝒂𝟑

𝑷 𝒅𝑽

. (30b)

where, as noted above, 𝑇 -- temperature of the horizon surface, 𝑆 --
corresponding entropy, 𝐸-- internal energy, 𝑉 -- space volume. 
It is impossible to use (30b) in the formalism under consideration because, as 
follows from the given results 𝑑𝑎, 𝑑𝑆, 𝑑𝐸, 𝑑𝑉 are not measurable quantities. 



First, we assume that a value of the radius 𝑟 at the point 𝑎 is a primarily 
measurable quantity in the sense of Definition 1 i.e. 𝑎 = 𝑎𝑚𝑒𝑎𝑠 = 𝑁𝑎𝓁, where 
𝑁𝑎 > 0 - integer, and the temperature 𝑇 from the left-hand side of (31) is the 
measurable temperature 𝑇 = 𝑇𝑚𝑒𝑎𝑠 in the sense of Definition 3.

Then, in terms of measurable quantities, first we can rewrite (30a) as 

𝒄𝟒

𝑮

𝟐𝝅𝒌𝑩𝑻

ℏ𝒄
𝒂𝒎𝒆𝒂𝒔 −

𝟏

𝟐
= 𝟒𝝅𝑷𝒂𝒎𝒆𝒂𝒔

𝟐 . (30c)

We express 𝑎 = 𝑎𝑚𝑒𝑎𝑠 in terms of the deformation parameter 𝛼𝑎 (formula  as 

𝒂 = 𝓵𝜶𝒂
−𝟏/𝟐

; (30 𝛼)
the temperature 𝑇 is expressed in terms of 𝑇𝑚𝑎𝑥 ∝ 𝑇𝑝. 

Then, considering that 𝑇𝑝 = 𝐸𝑝/𝑘𝐵, equation (30c) may be given as 

𝒄𝟒

𝑮
[

𝝅𝑬𝒑

√𝜶′𝑵𝟏/𝑻ℏ𝒄
𝓵𝜶𝒂

𝟏/𝟐
−

𝟏

𝟐
𝜶𝒂] = 𝟒𝝅𝑷𝓵𝟐. (30d)



Because 𝓁 = 2√𝛼′𝑙𝑝 and 𝑙𝑝 =
ℏ𝑐

𝐸𝑝
, we have 

𝒄𝟒

𝑮
[

𝟐𝝅𝑬𝒑

𝑵𝟏/𝑻ℏ𝒄
𝒍𝒑𝜶𝒂

𝟏/𝟐
−

𝟏

𝟐
𝜶𝒂] =

𝒄𝟒

𝑮
[

𝟐𝝅

𝑵𝟏/𝑻
𝜶𝒂

𝟏/𝟐
−

𝟏

𝟐
𝜶𝒂] = 𝟒𝝅𝑷𝓵𝟐.

(30e)
Note that in its initial form this equation has been considered in a continuous 

theory, i.e. at low energies 𝐸 ≪ 𝐸𝑝. Consequently, in the present formalism it is 

implicitly meant that the ''measurable counterpart'' of this equation also initially 
considered at low energies, in particular, 𝑁1/𝑇 ≫ 1. 

Let us consider the possibility of generalizing (to high energies) taking two 
different cases.     



Measurable case for low energies: 𝐸 ≪ 𝐸𝑝. Then 𝑎 = 𝑎𝑚𝑒𝑎𝑠 = 𝑁𝑎𝓁, where 

the integer number is 𝑁𝑎 ≫ 1 or similarly 𝑁1/𝑇 ≫ 1. In this case GUP, to a high 

accuracy, is extended to HUP. 
As this takes place, 𝛼𝑎 = 𝛼𝑎(𝐻𝑈𝑃) is a primarily measurable quantity 
( Definition 1), 𝛼𝑎 ≈ 𝑁𝑎

−2, though taking a discrete series of values but varying 
smoothly, in fact continuously. (30e) is a quadratic equation with respect to 

𝛼𝑎
1/2

≈ 𝑁𝑎
−1 with the two parameters 𝑁1/𝑇

−1 and 𝑃. In this terms, the equation 

(30e) may be rewritten as 

𝒄𝟒

𝑮
[

𝟐𝝅

𝑵𝟏/𝑻
𝜶𝒂

𝟏/𝟐
(𝑯𝑼𝑷) −

𝟏

𝟐
𝜶𝒂(𝑯𝑼𝑷)] = 𝟒𝝅𝑷𝓵𝟐. (30f)

So, at low energies the equation (30e) (or (30f)) written for the discretely-
varying 𝜶𝒂 may be considered in a continuous theory. 

As a result, in the case under study we can use the basic formulae from a 
continuous theory considering them valid to a high accuracy. 



In particular, in the notation used for Schwarzschild's black hole, 
we have 

𝒓𝒔 = 𝑵𝒂𝓵 =
𝟐𝑮𝑴

𝒄𝟐 ; 𝑴 =
𝑵𝒂𝓵𝒄𝟐

𝟐𝑮
. (31.BH1)

As its temperature is given by the formula 

𝑻𝑯 =
ℏ𝒄𝟑

𝟖𝝅𝑮𝑴𝒌𝑩
, (31.BH2)

at once we get 

𝑻𝑯 =
ℏ𝒄

𝟒𝝅𝒌𝑩𝑵𝒂𝓵
=

ℏ𝒄𝜶𝒂
𝟏/𝟐

𝟒𝝅𝒌𝑩𝓵
. (31.BH3)

Comparing this expression to the expression with high 𝑁1/𝑇 (𝑁1/𝑇 ≫ 1) for 

temperature, we can find that at low energies 𝐸 ≪ 𝐸𝑝, due to comment R2.2.

from Subsection 2.3, the number 𝑁1/𝑇 is actually coincident with the number 

𝑁𝑎: 

𝑵𝟏/𝑻 = 𝑵𝒂 = 𝜶𝒂
−𝟏/𝟐

(𝑯𝑼𝑷). (31.BH4)

The substitution of the last expression into the quadratic equation (30f) for 𝛼𝑎
1/2

makes it a linear equation for 𝛼𝑎 with a single parameter 𝑃. 



Measurable case for high energies: 𝐸 ≈ 𝐸𝑝. Then, 𝑎 is the generalized measurable

quantity 𝑎 = 𝑎𝑚𝑒𝑎𝑠 = 1/2(𝑁𝑎 + 𝑁𝑎
2 − 1)𝓁, with the integer 𝑁𝑎 ≈ 1.

The quantity 

𝚫𝒂𝒎𝒆𝒂𝒔 𝒒 =
𝟏

𝟐 𝑵𝒂+ 𝑵𝒂
𝟐−𝟏 𝓵

− 𝑵𝒂𝓵 =

= 𝟏/𝟐( 𝑵𝒂
𝟐 − 𝟏 − 𝑵𝒂)𝓵 (32)

may be considered as a quantum correction for the measurable radius 𝑟 =
𝑎𝑚𝑒𝑎𝑠, that is infinitesimal at low energies 𝐸 ≪ 𝐸𝑝 and not infinitesimal for high 

energies 𝐸 ≈ 𝐸𝑝. 



In this case there is no possibility to replace GUP by HUP. In equation (30e)
𝛼𝑎 = 𝛼𝑎(𝐺𝑈𝑃) is a generalized measurable quantity ( Definition 2). 
As noted in Comment R2.3, in this case the number 𝑁1/𝑇 is replaced by 

1/2(𝑁1/𝑇 + 𝑁1/𝑇
2 − 1), i.e. the equation is of the form 

𝒄𝟒

𝑮
[

𝟐𝝅

𝟏/𝟐(𝑵𝟏/𝑻+ 𝑵𝟏/𝑻
𝟐 −𝟏)

𝜶𝒂
𝟏/𝟐

(𝑮𝑼𝑷) −
𝟏

𝟐
𝜶𝒂(𝑮𝑼𝑷)] = 𝟒𝝅𝑷𝓵𝟐.

(33)

In so doing the theory becomes really discrete, and the solutions of (33)
take a discrete series of values for every 𝑁𝑎 or (𝛼𝑎(𝐺𝑈𝑃)) sufficiently close 
to 1.

In this formalism for a ''quantum'' Schwarzschild's black hole (i.e. at high 
energies 𝐸 ≈ 𝐸𝑝) formula (31.BH3) is replaced by 

𝑻𝑯(𝑸) =
ℏ𝒄

𝝅𝒌𝑩(𝑵𝒂+ 𝑵𝒂
𝟐−𝟏)𝓵

=
ℏ𝒄𝜶𝒂

𝟏/𝟐
(𝑮𝑼𝑷)

𝟒𝝅𝒌𝑩𝓵
. (31.BH3Q)

We should make several remarks which are important. 



Remark 3.3.
The parameter 𝛼𝑎 = 𝛼𝑎(𝐻𝑈𝑃), within constant factors, is coincident with the 
Gaussian curvature 𝑲𝒂 corresponding to primary measurable 𝑎 = 𝑁𝑎𝓁: 

𝜶𝒂 =
𝓵𝟐

𝒂𝟐 = 𝓵𝟐𝑲𝒂. (Gauss1)

Because of this, the transition from 𝜶𝒂(𝑯𝑼𝑷) to 𝜶𝒂(𝑮𝑼𝑷) may be considered 
as a basis for ''quantum corrections'' to the Gaussian curvature 𝐾𝑎 in the high-
energy region 𝐸 ≈ 𝐸𝑝: 

𝜶𝒂(𝑮𝑼𝑷) − 𝜶𝒂(𝑯𝑼𝑷) = 𝓵𝟐[
𝟏

𝟏/𝟒(𝑵𝒂+ 𝑵𝒂
𝟐−𝟏)𝟐𝓵𝟐

−
𝟏

𝑵𝒂
𝟐𝓵𝟐] =

= 𝓵𝟐(𝑲𝒂
𝑸

− 𝑲𝒂),

(Gauss1.c)

where the ''measurable quantum Gaussian curvature '' 𝐾𝑎
𝑄

is defined as 

𝑲𝒂
𝑸

=
𝟏

𝟏/𝟒(𝑵𝒂+ 𝑵𝒂
𝟐−𝟏)𝟐𝓵𝟐

. (Gauss1.Q)

In a similar way, we can derive a ''measurable quantum correction '' for the mass 
𝑴 of a Schwarzschild black hole at high energies. 



Remark 3.4.
A minimal value of 𝑵𝒂 = 𝟏 is unattainable because in this case obtain a value of the 
length 𝑙 that is below the minimum 𝑙 < 𝑙 for the momenta and energies above the 
maximal ones, and that is impossible. 
Thus, we always have 𝑵𝒂 ≥ 𝟐. 

Remark 3.5. It is clear that we have the following transition: 

𝑬𝒒. (𝟑𝟑)(𝑬 ≈ 𝑬𝒑) →
(𝑵𝒂≈𝟏)→(𝑵𝒂≫𝟏)

𝑬𝒒. (𝟑𝟎𝐟)(𝑬 ≪ 𝑬𝒑)

. 
Remark 3.6. So, all the members of the gravitational equation apart from 𝑷, are 

expressed in terms of the measurable parameter 𝜶𝒂. From this it follows that 𝑃 should 
be also expressed in terms of the measurable parameter 𝛼𝑎, i.e. 𝑃 = 𝑃(𝛼𝑎): 𝐸 ≪ 𝐸𝑝, 

𝑃 = 𝑃[𝛼𝑎(𝐻𝑈𝑃)] at low energies and 𝐸 ≈ 𝐸𝑝,𝑃 = 𝑃[𝛼𝑎(𝐺𝑈𝑃)] at high energies. 

Then, due to the above formulae, we can have for a ''quantum'' Schwarzschild black 
hole the “ horizon” gravitational equation in terms of measurable quantities 

(𝟒𝝅 − 𝟏)
𝒄𝟒

𝑮
𝜶𝒂(𝑮𝑼𝑷) = 𝟖𝝅𝑷[𝜶𝒂(𝑮𝑼𝑷)]𝓵𝟐,

where 𝛼𝑎(𝐺𝑈𝑃) takes a discrete series of the values 𝛼𝑎(𝐺𝑈𝑃) = (1/2(𝑁𝑎 +

𝑁𝑎
2 − 1))−2; 𝑁𝑎 ≥ 2 is a small integer.



Planck's Deformation of Basic Quantities

The results from the previous Section may be interpreted as follows: at high 
energies i.e. at Planck's scales 𝐸 ≈ 𝐸𝑃, all the basic quantities 𝑙, 𝑡, 𝑇, and so 
on written by measurable terms are modified (deformed).
In particular, we get 

𝒍 →
(𝑬=𝑬𝒑)→(𝑬≈𝑬𝒑) 𝟏

𝟐
(𝒍 + 𝒍𝟐 − 𝓵𝟐)

𝒕 →
(𝑬=𝑬𝒑)→(𝑬≈𝑬𝒑) 𝟏

𝟐
(𝒕 + 𝒕𝟐 − 𝝉𝟐)

𝟏

𝑻
→

(𝑬=𝑬𝒑)→(𝑬≈𝑬𝒑) 𝟏

𝟐
(
𝟏

𝑻
+ (

𝟏

𝑻
)𝟐 −  𝝉𝟐)

(P1)

In a similar way, we can obtain the high-energy (𝐸 ≈ 𝐸𝑝) ''measurable''

deformation for all the other physical quantities 𝑃, 𝐸, 𝑈, . . . initially specified 
at low energies 𝐸 = 𝐸𝑝 in terms of measurable quantities. 



Consequently, we can derive the ''measurable'' quantum corrections'' Δ𝑄 for 

𝑙, 𝑡, 1/𝑇 and so on: 

𝚫𝑸𝒍 =
𝟏

𝟐
(𝒍 + 𝒍𝟐 − 𝓵𝟐) − 𝒍 =

𝟏

𝟐
( 𝒍𝟐 − 𝓵𝟐 − 𝒍)

𝚫𝑸𝒕 =
𝟏

𝟐
(𝒕 + 𝒕𝟐 − 𝝉𝟐) − 𝒕 =

𝟏

𝟐
( 𝒕𝟐 − 𝝉𝟐 − 𝝉)

𝚫𝑸
𝟏

𝑻
=

𝟏

𝟐
( (

𝟏

𝑻
)𝟐 −  𝝉𝟐 −

𝟏

𝑻
)

. . . . . . . . . . . . . .

(P2)

For for a ''quantum'' Schwarzschild's black entropy

𝑺𝑺𝒄𝒉𝒘,𝒎𝒆𝒂𝒔−𝒒 =
𝟒𝝅(

𝟏

𝟐
(𝑵𝒓𝒔+ 𝑵𝒓𝒔

𝟐 −𝟏)𝓵)𝟐

𝓵𝟐/𝜶′ =

= 𝝅𝜶′(𝑵𝒓𝒔
+ 𝑵𝒓𝒔

𝟐 − 𝟏)𝟐.

(P3)



And  a ''measurable quantum correction'' for the temperature 𝑻, for the mass
𝑴 and entropy 𝑺 of a Schwarzschild black hole: 

𝚫𝑸𝑻 = 𝑻𝑯(𝑸) − 𝑻𝑯 =
ℏ𝒄

𝟒𝝅𝒌𝑩𝓵
(𝜶𝒓𝒔

𝟏/𝟐
(𝑮𝑼𝑷) − 𝜶𝒓𝒔

𝟏/𝟐
(𝑯𝑼𝑷)),

𝚫𝑸𝑴 = 𝑴(𝑸) − 𝑴 =
𝓵𝒄𝟐

𝟐𝑮
(𝜶𝒓𝒔

−𝟏/𝟐
(𝑮𝑼𝑷) − 𝜶𝒓𝒔

−𝟏/𝟐
(𝑯𝑼𝑷)) =

=
𝓵𝒄𝟐

𝟒𝑮
𝑵𝒓𝒔

𝟐 − 𝟏 − 𝑵𝒓𝒔
=

𝒄𝟐

𝟒𝑮
𝒓𝒔

𝟐 − 𝓵𝟐 − 𝒓𝒔 , (𝐏𝟐𝐒)

𝚫𝑸𝑺 = 𝑺𝑺𝒄𝒉𝒘,𝒎𝒆𝒂𝒔−𝒒 − 𝑺𝑺𝒄𝒉𝒘,𝒎𝒆𝒂𝒔 =

= 𝝅𝜶′(𝑵𝒓𝒔
+ 𝑵𝒓𝒔

𝟐 − 𝟏)𝟐 − 𝟒𝝅𝜶′𝑵𝒓𝒔
𝟐 =

= 𝝅𝜶′ 𝟐𝑵𝒓𝒔
𝑵𝒓𝒔

𝟐 − 𝟏 − 𝟐𝑵𝒓𝒔
𝟐 − 𝟏 .

As indicated by the last formulae the measurable quantum corrections are 
nothing else but the difference between the generalized measurable quantities  

and the primarily measurable quantities.



Conclusion

In the general case the problem at hand is as follows: 
the formulation of Gravity in terms of measurable quantities and also the 

derivation of a solution in terms of measurable quantities. 

This ''measurable'' Gravity -- discrete theory that is practically continuous at 
low energies 𝐸 ≪ 𝐸𝑝 and very close to the Einstein theory, though with some 

principal differences. By author’s opinion, in the low-energy ''measurable''
variant of Gravity we should have no solutions without physical meaning, 
specifically Godel's solution. 

At high energies 𝑬 ≈ 𝑬𝒑 this  ''measurable'' Gravity should be really a discrete 

theory enabling the transition to the low-energy  ''measurable'' variant of 
Gravity. Still it is obvious that, to construct a  measurable variant of Gravity at 
all the energy scales, in the  general case we need both the  primarily 
measurable variations 𝜟𝒑(𝑵𝜟𝒙, 𝑯𝑼𝑷) and the  generalized-measurable 
variations 𝜟𝒑(𝑵𝜟𝒙, 𝑮𝑼𝑷) from formula. The author believes that such 
construction should be realized jointly with a construction of a  measurable 
variant for Quantum Theory (QT).




